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Abstract—n this paper, a concept of integer fast Fourier trans-
form (IntFFT ) for approximating the discrete Fourier transform
is introduced. Unlike the fixed-point fast Fourier transform
(FXpFFT), the new transform has the properties that it is an

integer-to-integer mapping, is power adaptable and is reversible.

The lifting scheme is used to approximate complex multiplications
appearing in the FFT lattice structures where the dynamic range
of the lifting coefficients can be controlled by proper choices of
lifting factorizations. Split-radix FFT is used to illustrate the
approach for the case of ' -point FFT, in which case, an upper
bound of the minimal dynamic range of the internal nodes, which
is required by the reversibility of the transform, is presented and
confirmed by a simulation. The transform can be implemented
by using only bit shifts and additions but no multiplication.
A method for minimizing the number of additions required is
presented. While preserving the reversibility, the IntFFT is
shown experimentally to yield the same accuracy as thExpFFT
when their coefficients are quantized to a certain number of bits.
Complexity of the IntFFT is shown to be much lower than that
of the FxpFFT in terms of the numbers of additions and shifts.
Finally, they are applied to noise reduction applications, where
the IntFFT provides significantly improvement over theFxpFFT
at low power and maintains similar results at high power.

Index Terms—Discrete Fourier transform, fixed-point FFT, in-
teger transforms, lifting scheme.

. INTRODUCTION

efficient structures for computing DFT have been discovered by
taking advantage of the symmetry and periodicity properties of
the roots of unitye?27*/N such as the radix-2 FFT, radix-4 FFT,
and split-radix FFT [6]. In this paper, since we mainly focus on
the fast structures of the DFT, the terms DFT and FFT will be
used interchangeably.

The order of the multiplicative complexity is commonly used
to measure and compare the efficiency of the algorithms since
multiplications are intrinsically more complicated among all op-
erations [5]. Itis well-known in the field of VLSI that among the
digital arithmetic operations (addition, multiplication, shifting
and addressing, etc.), multiplication is the operation that con-
sumes most of the time and power required for the entire com-
putation and, therefore, causes the resulting devices to be large
and expensive. Therefore, reducing the number of multiplica-
tions in digital chip design is usually a desirable task. In this
paper, utilizing the existing efficient structures, a novel structure
for approximating the DFT is presented. This proposed structure
is shown to be a reversible integer-to-integer mapping called
Integer FFT (NtFFT ). All coefficients can be represented by
finite-length binary numbers. The complexity of the proposed
INtFFT  will be compared with the conventional fixed-point
implementation of the FFTHkpFFT). Moreover, the perfor-
mances of the new transforms are also tested in noise reduction

HE DISCRETE Fourier transform (DFT) is one of theProblem. _ '

most fundamental operations in digital signal processing, The invertibility of the DFT is guaranteed by orthogonality.
Because of the efficiency of the convolutional property, the DFThe inverse (the IDFT) is just the conjugate transpose. In
is often used in linear filtering found in many applications suchfactice, fixed-point arithmetic is often used to implement
as quantum mechanics [1], noise reduction [2], and image f8€ DFT in hardware since it is |mpOSS|bI9 to retain infinite
construction [3]. However, the computational requirements fgsolution of the coefficients and operations [6], [7]. The
completing the DFT of a finite length signal are relatively inc0mplex coefficients of the transform are normally quantized
tensive. In particular, if the input signal has length directly 0 @ certain number of bits depending on the tradeoff between
calculating its DFT requirea> complex multiplications4N?2 the cost (or power) and the accuracy of the transform. However,
real multiplications) and some additional additions. In 19651,irect quantization of the coefficients used in the conventional
Cooley and Tukey introduced the fast Fourier transform (FFTtructures, including both direct and reduced-complexity (e.g.,
which efficiently and significantly reduces the computationdfdix-2, radix-4, etc.) methods, destroys the invertibility of
cost of calculatingV-point DFT fromO(N'2) to O(N log, N) the transform. The np\{gl approach presented in this paper
[4]. Since then, there have been numerous further developmeHigrantees the invertibility property of the transform while
that extended Cooley and Tukey’s original contribution. Mar}geepmg the coefficients of the forward and inverse transforms

to be finite-length binary numbers.
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brute-force technique, i.e., the transform coefficients are optiix with elements[F|; , = Wif. Similarly, the IDFT can be

mized over the set of real integéfsy having the orthogonality given by

property (a system of nonlinear equations) as a constraint. The N1

same approach is extended to the case of the eight -point DFT( ) = 1 Z X (k)W

whose coefficients are selected from the set of complex inteX\") T N N

gers [11]. Although this approach is simple and straight for- =0 ()

ward, it is very difficult to extend the approach to the case @fhich follows from the fact thaF is an orthogonal matrix, i.e.,

large N—imagine solving a big system of nonlinear equationgsty — NT, wherel denotes complex conjugate transpose.

In addition, once a set of coefficients is obtained, it is not trivial pjscarding the factor ¥ in (3), itis clear that in order to cal-

as to how to adjust them for different transform accuracy unleggjate one coefficient of the DFT or IDFT, it requir@s com-

one reoptimizes the coefficients. plex multiplications andV — 1 complex additions. Therefore,
In [9] and [10], lifting factorization is proposed to replacghe total number of complex multiplications for computing an

the2 x 2 orthogonal matrices appearing in the eight-point DC_point DFT isN'2. However, this direct computation is ineffi-

using, respectively, the fast structure and the Hadamard strdgent and can be significantly simplified by taking the advantage

ture [12]. The resulting transforms are shown to be simple agglthe symmetry and periodicity properties of the twiddle factor
invertible, even though the lifting coefficients are quantized ang . These properties are

are power-adaptable, i.e., different quantization step sizes can be,
used to quantize the lifting coefficients without destroying the

invertibility. In this paper, lifting factorization is proposed to b
used in the fast structures of the DFT where complex multipl _her(_e are many existing fast ;tructures .to compute the PFT qle-
e&dlng on the length of the input. In this paper, the split-radix

cations are expressed in terms of liftings. The approach canp? P
used in many existing structures such as radix-2, radix-4, flucture that is suitable for input with length b = 27 will

split-radix with arbitrary sizes. However, the split-radix struc- € used to illustrate the proposed approachinGfFT . The

ture will be used to illustrate the proposed method, which c&k proaqh can also be applied t(.) other strgctures sugh as.radix-2
also be extended to other existing FFT structures as well. anq radix-4 as well. We now briefly describe the split-radix al-
gorithm and its network structure.

B. Outline of the Paper 1) Split-Radix FFT and Its Lattice Structurd:et us assume

that N = 2% with K > 2. From (1), we get
The next section reviews necessary backgrounds used r}n - @) 9

forn=0,1,..., N—1

* Symmetry propertyW]’\‘:A /2 = _wk;
« Periodicity propertyW i+ = Wk.

the development of the paper including the discrete Fourier N/2-1

transform and split-radix FFT, its fixed-point implementation, — X(2k) = Z [ (n)+z <n + )} WN/2

and lifting scheme. Section Ill presents a method for converting n=0

a complex multiplier into lifting structure. The dynamic range k=01, ..., N 1 4)

at internal nodes of the FFT lattice structure is discussed in
Section V. Section V discusses methods for optimizing tHnd

complexity and limiting the dynamic range of the coefficients. Nyat . N N
The accuracy and complexity of the proposed approach ars(4k +1) = Z [x(”) —Jx <” + Z) -z <” + 5)
presented in Section VI. Section VIl presents the use of the n=0
INtFFT in noise reduction application and compares its 1 <n + ﬂ } W}@Wk& (5)
performance with thExpFFT, and Section VIII concludes the 4 TN/
paper. N/4-1 N N
X(4k+3) = Z [a:(n)—i—ja:(n—i——)—a:(n—i——)
4 2
Il. BACKGROUNDS n=0
A. Discrete Fourier Transform and Its Fast Structure — jx <n + %)} Wy WN/4 (6)
The DFT of an/V-point discrete-time signal(n) is defined
by fork=0,1,..., N/4 — 1. It follows from (4) that the even-

indexed termsY (2k) can be obtained by th¥/2-point DFT of

N-1 .
Xk =S emwh,  fork=0,1,...,N—1 () MNenewsignal
n=0 Al(n) = z(n) + z(n+ N/2), forn=0,1,..., N/2.

whereWy = ¢~327/N or, in vector-matrix form . . o
A Similarly, the first- and third-indexed terms can be expressed as

X = Fx (2) theN/4-point DFT of two signals
where x = [z(0) z(1) --- z(N — D], X = A2(n) =WZR[AN(n) — jAS(n + N/4)]
[X(0) X(1) -+ X(N —D]*, andF is an N x N ma- A(n) = WAL (n) + jAL(n + N/4)]

1in this paper, we refer a real integer to a quantity whose real part has integer 1
value and whose imaginary part is zero. Similarly, a complex integer is definga_ n=01 , N/4, whereA4;(n) = z(n) —z(n + N/2).
as a quantity whose real and imaginary parts have integer values. It is clear from (4)—(6) that theV-point DFT coefficients of
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Fig. 1. Basic butterfly structure faN-point FFT using split-radix structure.

x(n) can be achieved by computing oNé2-point DFT and two

N/4-point DFTs for the new signal¢?(n). The same procedure "0 ™} T =70 ; 0
can be iteratively applied to these smaller size DFTs until th E i E E

size is reduced to one. Fig. 1 shows the forward and inverse - ' v !

tice structures for calculating?(n) from z(n) and vice versa. 1 R i S — ' T
Itis clear that the signald! can be obtained from(n) passing [ttt '
through the orthogonal butterfly lattices Fig. 2. Lifting scheme that allows perfect reconstruction.

B — [1 1} . _
=11 1 of the result after each operation will be kept up¥g bits, and

the tail will be truncated. However, this conventional fixed-point
as indicated in Fig. 1. Similarly, the signal§(n) can be ob- arithmetic destroys the invertibility of the transform because the
tained from4j(n) passing through another orthogonal butterflyy £ coefficients are quantized. This paper presents a novel way
lattices to quantize the DFT coefficients that preserves the invertibility

B, — H ﬂ property.
) C. Lifting Scheme

and the twiddle factoiV'3;. It should be noted that the multi- - )
pliers—1, 7, and—j in B, will not be counted for the number of  1he lifting scheme has been proposed to be a tool in con-
complex multiplications. Since the matricBs and their com- structing wgvelets and perfect recons?ruc.tlon (PR) f||t_er_banks
plex conjugate transposes map integers to integers, to obfdial: [14]- Biorthogonal filterbanks having integer coefficients
theIntFFT , we only need to focus on the complex multiplier§an be easily implemented and can be used as integer-to-integer
W, and their complex conjugates as will be discussed in déansform. Lossless image coding is an example of applications

tails in the next section. that uses such a transform.
Consider the following two-channel systemin Fig. 2. The two
B. Fixed-Point Arithmetic Implementation inputszo andz; are fed into a two-port network that contains

One of the factors that primarily affects the cost of the DSpPeratorsio andA;. The first branch, which is operated Hy,
implementation is the resolution of the internal nodes (the sit&ecalleddual-lifting, whereas the second one, which is operated
of the registers at each stage). In practice, it is impossible to RY- 41, is calledlifting, as indicated in the figure. One can im-
tain infinite resolution of the signal samples and the transforfiediately see that the system is PR for any choiced,oand
coefficients. Since the floating-point operation is very experli- Since the operatord, and A, can be nonlinear, rounding
sive, these numbers are often quantized to a fixed numberdflooring operations, etc., can be used without destroying the
bits. Different formats of fixed-point representation of numbef8R property.
can be found in [7]. In this paper, the variabl¥s and V; are
used to denote the numbers of bits required to store the coelffi- CONVERTING COMPLEX NUMBERS TOREAL LIFTING STEPS

cients in the DFT calculation and the input signal, respectively. Recall that all the coefficients appearing in the FFT and IFFT
Each addition can increase the number of bits by one, whereggictures are complex numbers with magnitude one, i.e., every
each multiplication can increase upA@ — 1, whereN. is the  coefficient can be expressedd$, whered is some real number.
number of bits of the multiplier. The nodes in latter stages r&ince these coefficients are scalar with magnitude one, the in-
qUire more bits than those in earlier Stages to store the Outpétfses are s|mp|y their Comp|ex Conjugates_ However, if a co-
after each arithmetic operation without overflows. As a resulifficient is quantized, the inverse of the new coefficient is no

the number of bits required to store the results grows accumgnger guaranteed to be its complex conjugate. Specifically, let
latively as/V or the number of stages increases. In general, theye a complex number with magnitude one, i.e.,

number of bits at each internal node is fixed to a certain number
of bits. Call this numbe#v,,. The most significant bits (MSBs) a=c+js
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= = —
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Ta=c-is = r’@ —
lla=c-js = —
Fig. 3. Butterfly structure for implementing a complex multiplication. _'@

Fig. 4. Lifting structure for implementing a complex multiplication and its
wherec ands are real numbers, and + s® = 1. Leta? be the inverse.

guantized version of, i.e.,

The advantages of this factorization are twofold. First,
a® =t + jst the number of real multiplications is reduced from four to
three, although the number of real additions is increased from
wherec? ands? are finite-word length approximations efand two to three. Second, it allows for quantization of the lifting

s, respectively. Hence, the reciprocal«sfis coefficients and the quantization of the result of each multi-
plication without destroying the PR property. To be specific,

1 Lost instead of quantizing directly, the lifting coefficientss and

" Jat2 e (c — 1)/s are quantized, and therefore, its invefst also

consists of three lifting steps with the same lifting coefficients

In general]a?| is not one, althoughz| = 1. Instead,1 /a? may but with opposite signs. Further than that, nonlinear operators
not even be a finite word-length complex number, even thougan also be applied to the product at each lifting step. Fig. 5
a?is. This is the reason why the conventional fixed-point aritighows four equivalent lifting structures for approximatiRg
metic does not preserve the PR property. where @ indicates a nonlinear operator such as rounding or

The PR property can be preserved via the lifting scheme. E&i#Pring operation. Each structure has its own advantage for
complex multiplication is equivalent to four real multiplications@Ptimizing the computational complexity of the transform, as
Specifically, letr = z,. + jz; be a complex number, and henceWill be discussed in the next section.
y = ax = (cx, — sx;) + j{cx; + sx,), Or in the vector-matrix

form A. Eight-Point Split-RadixntFFT
This subsection demonstrates how to construct an eight-point
y=[1 j| {C _3} {%} =[1 j|R {x,} (7) INtFFT  based on the split-radix structure. Fig. 6 shows the lat-
SRS Li tice structure of the eight-poilitFFT , where the twiddle fac-

tors W¢ andWg are implemented using the proposed conver-
where sion. Note that instead of using the one in Fig. 5(a), the lower
lifting factorization is obtained from the structure in Fig. 5(b),
R — [c _3} ] of which the lifting coefficients are betweenl and 1. This de-

5 ¢ tail will be discussed in Section V. The rounded boxes at the
lifting coefficients represent quantization of both the lifting co-
Efficients and the results after multiplications.

It is clear from Fig. 6 that there are 24 butterflies with co-
fficients 1,—1, 7, and—j that do not require any multiplica-
on or addition. These 24 butterflies can be implemented using
624)(2) = 48 complex adders or 96 real adders. The rest of the
computation is based on the binary representation of the lifting
coefficients+1/y/2 and+(v/2 — 1).

1 c—1 L o 1 c—1
R= [c _S} = s [ } s . (8)
s ¢ 0 1 s 1]l IV. RESOLUTION OF THEINTERNAL NODES

) . . ~ Recall that in the implementation of FFT and IFFT, all the
Fig. 4 illustrates the conversion from one complex multiplicasgefficients are of the formiVk = ¢/, whered = 27k/N

tion to three-step lifting scheme. In order to distinguish the c@yr some integek. These twiddles can be replaced by lifting
efficients in the lifting structure from the original coefficients gcheme as

ands, we now call the new coefficientg — 1)/s ands lifting
coefficientsand refer the original coefficientsands asbutterfly
coefficients.

Fig. 3 shows the butterfly structure of a single complex mult
plication. Notice that: has magnitude one if and onlyK is an
orthonormal matrix. Assuming that + s? = 1 with s # 0 (if o
s = 0, thena = 1 or —1, which does not need to be quantized)[1
itis easy to see tha& can be decomposed into three lifting step
[13].

Re{'}} ©)

ej9 = [1 J]Rg |:Im{}



ORAINTARA et al: INTEGER FAST FOURIER TRANSFORM

Re{.}
Rl
Sl ©
Im{.}
(a) (b)
Ref.} Re{.}
(9) |- ) J
T 1
N © I
Im{.} Im{.} 1
(c) (d)

611

Fig. 5. Four equivalent lifting structures with quantization for implementing a complex multiplication.

x(0) » X(0)
x(1) » X&)
x(2) » X(2)
x(3 » X(6)
x(4 X1
x(5) X(5)
-1
x(6) X(3)
x(7) h X

Fig. 6. Lattice structure of eight-poiltitFFT using split-radix structure.

where in the number of bits). What remains to be done is the conver-

sion of each twiddle multipliefV%- into lifting steps, as dis-

Ry = [Cf’s 0 - Sme} cussed in the previous section. Since the lifting structure is re-
sing  cosd versible regardless of the presence of quantization, the overall
; ¢- 1 1 o1l c—1 transform will also be reversible. Let us call the new transform

= s [ } [ s ] (10) andits inverse transforimtFFT andIntIFFT , respectively.

[0 1 s 1 0 1 Because théintFFT andIntlFFT  have integer coefficients,

multiplierlessintFFT andIntlFFT  can be accomplished by
¢ = cosf, ands = sind. Define R(,Q to be a nonlinear ap- replacing each real (integer) multiplication by a number of addi-
proximation ofR4, where the product at each lifting iRy is tions. The number of additions for each multiplication depends
quantized by the nonlinear operatQr as depicted in Fig. 5(a). on the number of 1s appearing in the binary representation of
Let N, denote the number of bits used by each quantizekc- the multiplier.
cording to Fig. 1, it is obvious that the FFT and IFFT can be Similar to the case dfxpFFT andFxpIFFT , let us define
approximated by lattice structures with finite word-length (in&vV,. and,,, respectively, to be the number of bits used to quan-
teger) coefficients. The butterfly matricd; and B, do not tize each lifting coefficient and the size of the registers used to
need to be changed since their coefficients are integers, and thtye the value at each node, i.e., input and output nodes of each
map integer inputs to integer outputs (with possibly an increastthe butterflied3; andB; and the result after each lifting step.
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which implies the following theorem.
Theorem IV.2: f(2r) < N; +3r—landf(2r +1) <
N; +3r + 1, wherer > 1.
Proof: The proof can be easily done by induction.

V. OPTIMIZING THE LOW-POWER MULTIPLIERLESSINtFFT

Im{.}

In the previous section, we have discussed how to convert
Fig. 7. Statistical model of lifting scheme used in a complex multiplier. @ COmplex multiplication with the multiplier having magnitude
one into lifting scheme and how to estimate an upper bound of
Although theIntFFT produces a reversible integer-to-integefV, - The resulting conversion allows each complex multipli-
mapping, the number of bits used to represent the outputs meaon to be approximated by finite word-length lifting coeffi-
be greater than that used for the inputs. Indeed, accordingCt@nts. Each of these quantized lifting multipliers can be con-
Fig. 1, this number grows internally from the left to the righstructed by a number of additions and shifts depending on the
of the forward transform. The possible maximum value of thigumber of 1s in its binary representation. This section discusses
number defines the minimum value df,, N, which allows Several methods for optimizing the lifting coefficients with dy-
the transform to be reversible. Each butterfly maiBix or B, namic range constrained. The goal is to reduce the number of
can increase the resolution of its input by up to one bit. Liké@dditions by optimally using an alternative lifting factorization.
wise, each lifting step used in the approximation of the twiddle . i _
multipliers can also increase the resolution of the signals. In tl‘ﬁ‘s Controlling the Range of Lifting Coefficients
section, we will estimate an upper boundéf** for the case ~ Consider the three lifting coefficients &, in (10). Since
of N = 2% using the split-radix structure. In our constructiothe value okin # can be arbitrarily small, the dynamic range of
of INtFFT , each twiddle factor is approximated by two liftings(cos 8 — 1)/ sin 8| can be arbitrarily large. W € (-7 /2, 7/2),
and one dual lifting (or two dual liftings and one lifting). In ordeithencos # > 0, and

to simplify the analysis, let us model each twiddle factor as in T,
Fig. 7, wheren; are random noise resulting from the quantiza- OS,Q —1 ‘ _ ([ Vi~ St 6-1
tion of the lifting coefficient and the quantization of the product | Sin? sin 6

after multiplication by the lifting coefficient. Let us assume that 1
1) all lifting coefficients are between1 and 1; T 5, .
2) |ni| < [(2 — v/2)/3] max(|Re{u}], [Im{u}). Vi—sf
The first assumption can be reached by selecting a proper altéf € (=7, —7/2) U (7/2, 7), |(cos 6 — 1)/ sin 6| > 1, which
native lifting factorization shown in Fig. 5. In the next sectioniS not desirable. Hence, the absolute values of the lifting coef-
we will show that at least two of the four equivalent structurdigients can be controlled to be less than or equal to one by re-
have lifting coefficients between1 and 1. The second assumpPlacingRe by —Ry..~ as

=|sinf| - < |sinf] < 1.

tion is equivalent to thatv. and.V, are sufficiently large. — cosf sin 6
Theorem IV.1: The lifting implementation of each twiddle Ry =—Royr =~ [—sine _ COSQ}
factor increases the resolution of its input by, at most, one bit. 1 1
Proof: See the Appendix. 1 ¢F 1ol [1 ¢t
It should also be noted that the original butterfly structure = S [_S 1} S (12)
guarantees that the dynamic range of the output will be less than 0 1 0 1
twice that ofmax(|Re{u}|, |[Im{u}|) since Whené € (-, —7/2) U (n/2, 7)
|cRe{u} + sIm{u}| < [Refu}| + [Im{u}] cosf4+1|  |—v1—sin26+1
< 2max(|Re{u}|, |[Im{u}|) sinf | siné
leIm{u} — sRe{u}| < |Re{u}| + |Im{u}] )
< 92ma ) =|sinf| - | ———| < |sinf| < 1
< 2max(|Re{u}, [Im{u}) T

Now, we are ready to estimate an upper bound/gf*. For
convenience, lef (K) be N™» for the case ofV = 2%, Itis
clear thatf(0) = N;, whereN; is the resolution of the input.
Since a two-point FFT can be constructed by a butterfly matrgx
B1, f(1) = N; + 1. WhenK = 2, the two twiddle multipliers B. Another Choice of Lifting

are 1 andj, which do not increase the number of bits. Thus, In the previous subsection, we have presented an alterna-
f(2) = N; + 2. In general, the twiddle factors can be com:. P ' P

plex irrational numbers that also increase the resolution of tH\ée solution if the or!g|pal lifting coefficients have magnlt_ude
internal nodes. Whe# > 2, according to Fig. 1, it is easy togreater than one. This is because of the fact that multiplying by

see that —1 does not increase the complexity of the algorithms (except
one negation is used). It should be noted that to multiply by
SK) <max(f(K—-—1)+1, f(K—-2)+3) (11) or—j, one only needs to switch between the real and imaginary

and hence, the new lifting coefficients fall betweef and—+1,
as desired. Fig. 5(b) shows the equivalent block diagram for
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TABLE | between two binary numbers, as long as the total number of 1s
POSSIBLE LIFTING STRUCTURES FOREACH VALUE OF 6 WITH ALL is less. For example, the 4-bit representation of 7 can be given
LIFTING COEFFICIENTSBETWEEN —1 AND 1 by
Range of § | Possible lifting structures
©, 7/2) Figures 5(a) and (c) 7=0111, or 7=8—1=1000, — 00015.
(n/2, m) Figures 5(b) and (c)
(=7, —7/2) Figures 5(b) and (d) ; f :
oz ) Figares 3(a) and (d) One can see that in the left binary representation of 7, there

are three 1s, and hence, two additions are required to complete
the multiplication. On the other hand, there are only two 1s ap-

parts of the input with one sign changing, and thus, there is Baaring in the right representation, and hence, only one addition
addition or multiplication required. Utilizing this fact, anotheysyptraction) is needed. Table Il summarizes the conventional

choice of lifting factorization can be achieved as and optimal binary representations of the 16-bit lifting coeffi-
R sing —cos¢] [0 1 R 1 0 cients used in the split-radjx 16-pqiqt FFT, where t.he t.widdle
9= | cos¢ sing | ~ ol ™o —1 factors are constructed using the lifting structures in Fig. 5(a)

or (b). Similarly, Table Il summarizes the conventional and
[0 1} ll s—1 ] [1 0} ll s—1 ] [1 0} optimal binary representations of the 16-bit lifting coefficients

¢ c 1 ¢ 0 —1| usedinthe split-radix 16-point FFT, where the twiddle factors

0 1 0 1 are constructed using the lifting structures in Fig. 5(c) or (d).
(13)  In order to minimize the number of additions used to represent
_ B ; ; each twiddle factoW ¥, the binary representation with less total

where¢ = (m/2) — 6. Fig. 5(c) shows an equivalent bI?CCknumber of 1s (and thus the corresponding structure) will be se-
lected between Tables Il and Ill. For example, the numbers of 1s
used to represet’; from Tables Il and Ill arg x 2 +4 = 18
and6 x 2+5 = 17, respectively. Hence, the structure in Fig. 5(c)
should be used to implemeRt}, in order to achieve the min-
imum number of additions.

diagram described by (13). Similar to the previous case d
(0, w),sinf > 0, and hencel{sin# — 1)/ cos 8| < 1. However,
if & € (-7, 0), siné < 0, and the magnitude of the lifting
coefficient(sin @ — 1)/ cos 8 will be larger than one. Therefore,
R should be replaced byRy. . as

R, — [ —sin¢ cos ¢
o= | —cos¢ —sing VI. PERFORMANCES ANDCOMPLEXITIES
[0 1

1 0} A. Minimal N,, for PR Systems

—— Roir
1 0} - {0 -1 In order for thelntFFT to be invertible, the number of the

_ s+1 s+1 internal node bits and, thus, the number of bits of the output must
__ 19 1} 1 — [ 1 0} 1 — be large enough since, after each addition, the dynamic range of
10 0 1 —c 1 0 1 the output will be increased by at most one bit. This number
1 0 directly depends on the size of the FFT and the resolution of the
: [0 _1} . (14) input, as discussed in Section IV. In this section, the following
experiment is carried out. Random signals with the resolution
Fig. 5(d) shows an alternative block diagram described by (14)V;) of 16 bits are used as the input of th&point IntFFT
To summarize, for each value 6fthere are two out of four for N = 4, 8, ..., 1024. Each lifting step contains a 16-bit
possible lifting factorizations (see Fig. 5) where all the liftingeal multiplier, i.e.,N, = 16 and a 16-bit uniform quantizer.
coefficients fall within—1 and 1, as summarized in Table .  For a fixed value ofV, theIntFFT followed byIntIFFT  of
- o each random input is computed and compared with the original
C. Fewest Addition Optimization input. N™in is determined by the smalleat,, which causes the
We have seen different choices in parameterizing the liftirgtput to be the same as the input, i.e., for each injyt” is
coefficients for the FFT twiddle coefficients. Without any quanestimated. The maximum value 8£7** for different inputs is
tization of the lifting coefficients and the incoming signals, eacitsed to represedV** of this particular case/, ;, /V. and
twiddle coefficient, as presented in Fig. 5, requires three rg&solution of the quantizatio®). It should be noted that the
multiplications and three real additions. However, ftlFFT  upper bound ofV;"'™ presented in Theorem IV.2 only depends
andIntIFFT , the lifting coefficients are quantized 19, bits, on .V andN; but does not depend aN.. or the resolution of
and the number of additions required for each multiplication cdhe quantizatior®. Fig. 8 shows the estimate¥d*'" obtained
be counted from the number of 1s presented in the binary rdem the experiment for different values of and the upper
resentation of the quantized multiplier. The structure with tHeound calculated using Theorem IV.2. Itis evident tNgt™ is
smallest number of 1s appearing in the quantized coefficiegondecreasing function 6f experimentally and theoretically.
should be chosen so that the total number of required additiose estimated values g¥;** fall below the upper bound, as
is minimized. expected.
Taking into account that the complexity of one subtraction
is equivalent to that of one addition and should be counted Bs Accuracy of thentFFT
an addition, the optimal representation is not necessarily repin this section, the performances of tHatFFT are
resented as a single binary number, but it can be a differeregerimentally evaluated and compared with the conven-




614 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 50, NO. 3, MARCH 2002

TABLE I
EXAMPLE OF OPTIMAL 16-BIT BINARY REPRESENTATION FOR THEQUANTIZED LIFTING COEFFICIENTS OF THESTRUCTURES
IN FIG. 5(a) OR (b) USED IN THE SPLIT-RADIX 16-FOINT FFT

Multiplier | Lifting coefficient x2™® | Binary representation Optimal binary representation
Wi -3227 —110010011011, —110010011011,
6392 1100011111000, 11001000000002 — 10004

Wz, -6517 —1100101110101» —11001100001015 + 10000,
12539 11000011111011, 110001000000002 — 101,

Wi, -9940 —10011011010100, —101000000101002 + 101000000,
18204 100011100011100, 1001000001000002 — 100000100,

Wi -13572 —110101000001004 —11010100000100,
23170 101101010000010, 101101010000010,

22 -21894 —101010110000110- —101010110000110,
30273 111011001000001, | 1000000001000001, — 101000000000,

TABLE Il

EXAMPLE OF OPTIMAL 16-BIT BINARY REPRESENTATION FOR THEQUANTIZED LIFTING COEFFICIENTS OF THESTRUCTURES
IN FIGS. 5(c) OR (d) USED IN THE SPLIT-RADIX 16-PoINT FFT

Multiplier | Lifting coefficient x2!° | Binary representation Optimal binary representation
wk -26892 -110100100001100- ~110100100001100,
32138 111110110001010, 10000000000010102 — 1010000000~
W3, -21894 -101010110000110, —101010110000110,
30273 111011001000001, | 10000000010000015 — 101000000000,
Wi -17514 -100010001101010, —-100010001101010,
27245 110101001101101, 110101010000002 — 10100<
Wi -13572 -11010100000100, —110101000001002
23170 101101010000010, 101101010000010<
W -6517 -1100101110101, —1100110000101, + 10000,
12539 11000011111011, 110001000000002 — 101,
30 T T T y T 1 T ~ -60
*  Estimated N™" e ” 70
o8k L~ Theoretical bound e |
7 -80
el % -90
26} e 4 =
! g * * ‘5_100
EZQ4 L .- ’ g % -110
s . * = _120
7/ ’ e
221 L 1 g _130
’ w
e *
L7 -140
20+ ,7 * b
e -150
4 * :
. ~160 i ; ; ;
18 : y : x = x ” 0 5 10 15 20 25
2 3 4 5 K= I?) gzN 7 8 9 10 Number of coefficients bits (Nc)

Fig. 9. Comparison of the accuracy of the conventional fixed-point arithmetic
FFT and the newintFFT measured in frequency domain for 256-point
transform.

Fig. 8. Number of internal-node bits required for afh-point Split-Radix
IntFFT to be invertible when the signals hag = 16 bits.

tional FxpFFT. The experiment is performed for the case aftructures in Fig. 5. It is evident that the propodatFFT

N = 256. The input signal is quantized to 16 bits, whereas thaelds approximately the same accuracy as that of the conven-
internal nodes of both structures are set to 27 bits. Obtaingmhal FxpFFT when N, < N;. The errors start to converge
from Theorem V.2, 27 bits will ensure that thetFFT is whenN, > N;, where the error of thintFFT approximately
reversible and, thus, zero reconstruction error. Fig. 9 compaBdB higher. Fig. 10 shows the reconstruction error for the case
the errors of the Fourier transform using thepFFT and the of FxpFFT andFxplFFT , whereas the reconstruction error of
IntFFT  for different values ofN.. In the structure of the the proposedntFFT andIntiIFFT remains zero.

FxpFFT, NV, is the number of bits used to quantize the twiddle Although the Fourier transform is a linear operator because of
factors, whereras in case of theFFT , V. is the number of the nonlinearity in the quantization at each lifting, the resulting
bits used to quantize the lifting coefficients obtained from thetFFT becomes nonlinear. Therefore, the convolutional rule
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-40 T T T T -60 T T T
z : : : -~ IntFFT
-50 —70F NG .................. ,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,, — FprFI'
g -60 -80
z : o
R @
L 7o : g -9
g f 3
: =5
= -80 £-100
] : 3
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£ -90 : 5 -110
c : g
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: | 5
2_110 ﬁ 2 _130
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Fig. 10. Reconstruction error of the conventional fixed-point arithmetic FFfig. 12. Comparison of the accuracy of the conventional fixed-point arithmetic
for 256-point transform. FFT and thdntFFT measured in frequency domain for 256-point transform
when the signal is complex exponential.

TABLE IV
COMPUTATIONAL COMPLEXITIES OF THESPLIT-RADIX FFT AND THE INTEGER
VERSIONS (FXpFFT AND IntFFT ) WHEN THE COEFFICIENTSARE

since it is below the quantization error-97 dB for the case
140 : : : of N; = 16 bits). It should also be noted that both structures
0 5 10 15 20 25 (butterfly and lifting in each twiddle coefficient) create approx-
Number of coefficients bits (No) imately the same amount of error to the convolutional rule.
Ei In the above experiments, random vectors are used to test the
ig. 11. Comparison of the accuracy of the conventional fixed-point . . .
arithmetic FFT and the newntFFT based on the convolutional rule for P€rformances of thentFFT . It is also interesting to compare
256-point transform. the results when the signal is a pure sinusoidal. In this experi-
ment, a complex exponential vector with relative frequency 25.3
does not apply. Likewise, in the caseftpFFT, the butterfly is used to test the accuracies of the two approximation methods.
coefficients also have to be quantized, which makes the resultin§- 12 shows the resulting errors of the forward FFT. In this
transform nonlinear as well. In order to simulate the distortiofRSe, it is found that the accuracy of tmeFFT is approxi-
after using the convolutional rule, another experiment is coftately the same as that of thepFFT whenN. < IV; and is
ducted. Using the same parameters as in the previous exp@pproximately 3 dB lower whefV, > ;. This result is con-
ment, two input signals are randomly generated. The Fourfdptent to the case of random noise input.
transforms of the two signals are then calculated using the ideal
FFT:IntFFT andFxpFFT. For each case, the inverse Fourief: Complexity of théntFFT
transform of the product of the two Fourier transforms is then In this section, the method for minimizing the number
calculated. The difference between the resulting signal and thfeadders discussed in Section V is used to estimate the
one obtained by using the ideal FFT and IFFT defines the ermmputational complexities ofFxpFFT and IntFFT  of
of the convolutional rule. Fig. 11 compares the error of the codifferent sizes. In particular, the numbers of 1s used in the
volutional rule of the=xpFFT to thelntFFT . Unlike the case 10-bit binary representations of the butterfly coefficients in
of the forward transform, it is evident from Fig. 11 that althoughxpFFT and of the lifting coefficients itntFFT are counted.
two transforms (and their inverses) are nonlinear, the error Tdble IV summarizes the numbers of real multiplications and
the convolutional rule can be decreased by increasing the re=al additions needed to perfordy-point split-radix FFT
olution of the coefficients§.). At N. = 7, one can see that[16] and the numbers of real additions and shifts required in
the error is less thar 100 dB, which is acceptable in generalV-point FxpFFT andIntFFT . From Table 1V, the numbers

@ QUANTIZED TO N, = 10 BITS
2 -90 FFT FXpFFT IntFET
] N || Multiplications | Additions || Additions | Shifts || Additions | Shifts
S_100 16 20 148 262 144 202 84
% : 32 68 388 746 448 559 261
z : 64 196 964 1910 1184 1420 694
8-110 : 128 516 2308 4674 2968 3448 1742
2 : 256 1284 5380 10990 7064 8086 4160
35 : 512 3076 12292 25346 16472 18594 9720
5 -120 1024 7172 27652 57398 | 37600 41997 | 22199
5 |

H ; i i
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Fig. 13. Noise reduction system. (a) Time-domain processing. (b) Frequenc N
domain processing. onf \ |
of additions ofFxpFFT andIntFFT are approximately 100% , , , , , ,
and 50% more than that of the exact FFT; however, no rei 2 4 6 10 12
multiplication is needed. Comparing betweErpFFT and

Number of coefficient bits N 5

IntFFT , the number of additions dhtFFT

IS 23-27% less Fig. 14. Mean square error of the signal estimate for different resolutions of
thanFxpFFT, whereas the number of shifts is 41-42% less. the coefficients.

VII. A PPLICATION IN NOISE REDUCTION

wherew, (k) andw, (k) are independent white Gaussian noises.
h ; FH dth q The variances of, (k) andw,, (k) are chosen so that the signals
-(IJ_I e per orrr(;a_ncesp t BtdFFT_ an tbleFXpFIFTFareiegste Sék) andn(k) have unit variance and, hence, the SNR at the re-
and compared in noise reduction problem. In Fig. 13(a), thejeq signak(x) is 0 dB. This mixtured signad(k) is divided
signal of mte_rests(k) with a k”OW'?.pOWer spectral de”S'tYmto blocks, each of which hdg = 256 samples, i.e., the size of
(P.SD)(I)S(w).'S corrupted by an ad‘?"“‘"? mdep.endgnt Gaussigfle FET and IFFT is 256. The comparison begins by processing
noisen(k) with a PSD®,,(w), resulting in a noisy signal the noise reduction algorithm as depicted in Fig. 13(b), where
2(k) = s(k) + n(k). the FFT and IFFT bl_oc_ks are performed by ﬂﬁ)epFF_T_and
theIntFFT (and their inverses). The butterfly coefficients of

The received signat(k) is then optimally filtered by a filter FxpFFT and the lifting coefficients olntFFT are quantized
h(k), resulting in an estimate to N, bits for different values ofV... The internal nod&V,, is

. set to 24 bits.

5(k) = z(k) @ h(k)

Fig. 14 shows the mean square error between the signal es-
where® denotes convolutional operator. Since the system tignates(k) and the original signad() over the range ofV..
linear time invariant (LT1), the cost in calculating the convoluThe solid line is obtained by using tfpFFT and its inverse,
tion betweem(k) and h(k) can be reduced by taking the adwhereas the dash line is obtained by usmglthEFT and its
vantage of the convolutional rule. Fig. 13(b) shows an equivklverse. AsN, increases, the mean square errors of both cases
lent block diagram of the noise reduction system processedd@crease, approaching the dash-dotline, which is when the exact

frequency domain. The Fourier transform of the received sigrfaf T and IFFT are used. It is evident that when the coefficients
x(k) is calculated and multiplied by the filter frequency reare severely quantized € N. < 7), the mean square error in
sponseH (w). The signal estimate is then obtained by calcihe case otFFT is lower than thatin the case BXpFFT by
lating the inverse Fourier transform of the product up to 18%. This is because whéf is small, the reconstruction
error of theFxpFFT and its inverse tends to dominate the recon-
= struction signal. On the other hand, at high resolutidp & 8),
It is easy to show that the optimal filtd () that minimizes bothIntFFT andFxpFFT yield similar results, which are very
the mean square errdt|3(k) — s(k)|? can be given by [2]

close to the case of the exact FFT as indicated in the enlarged
portion of the curves in Fig. 14.
o, o, D,
0 (w) («)

S(w) =

H{w)X(w).

o@) ~ Ba@) F (@) L By )

VIIl. CONCLUSION
whered,(w), ®,,(w), and®,.(w) are the power spectrum densi- In this paper, we have presented a conceptnFFT ,

ties ofs(k), n(k), andx(k), respectively. Note that in the secondvhich can be used to construct FFT with integer coefficients.
equation of (15), we have used the fact th@t) andn(k) are
independent.

It provides a new method for approximating the DFT without
using any multiplication and can simply be applied to the case

In this experiment, the signalgk) andn(k) are generated of large-size DFT. Unlike thExpFFT, which is the fixed-point

by two second-order random processes described by arithmetic version of FFT, théntFFT is reversible when

the coefficients are quantized. Its inverkglFFT can be

computed with the same computational cost as that of the

forward transform. The new transform is suitable for mobile

s(k) =1.2s(k — 1) — 0.9s(k — 2) + ws(k),
n(k) =0.1n(k — 1) — 0.85n(k — 2) + wy (k)
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computing and any handheld devices that run on batteries sihtence

it is adaptable to available power resources. Specifically, the co- _1

efficients appearing in the proposed structures can be quantizett:| < |Re{u}| + ‘ <—> Im{u} +ng

directly for different resolutions, i.e., different computational

costs, while preserving the reversibility property. < |Re{u}| + [Im{u}| < 2max(|Re{u}|, [Im{u}]).
Although a large class of FFT structures such as radix-2, .

radix-4, and split-radix can be approximated by this approa hr,om the expression af, we have

the split-radix structure is used to illustrate the technique. An |4, < |sRe{u} + cIm{u}| + |sny| + |na

analysis of the dynamic range of the internal nodes is presented.

Using an appropri.ate ghoice of lifting factoriz.at'ions, it i.s proven < \/Re{u}2 + Im{u}? + |n1| + |n2|

that lifting approximation of a complex multiplier can increase

the resolution of the input by at most one bit. An upper bound 2(2 2

of the dynamic range of the internal nodes is estimated and con- < <\/§ + %) max(|Re{u}], [Im{u}|)

firmed by a simulation for the case of the split-radix FFT. The

computational complexity of the resulting transform is calcu- < 2max(|Ref{u}|, |[Im{u}|).

lated by the numbers of real additions and shifts. A method for

minimizing the number of additions is presented and used Hds easy to see thatc — 1)/s| < 1if and only if ¢ > 0, and

compare the computational costdim-FT andFxpFFT. Ac- thus,|ec — 1] < 1. Hence

cording to the simulation, the complexity bftFFT is lower

than that ofFxpFFT by a significant margin. Ita] < leRe{u} — sIm{u}| + |(c — 1)
The accuracy of the transforms is compared experimentally. n ‘ < c—1 ) n

It is evident from the simulations that botimtFFT and 2

FxpFFT have approximately the same distortion from ideal

FFT when the resolution of the inpu¥; is greater thanv.. < <\/§+ 3(2- ﬁ)) max(|Be{u}], [Im{u}))

+ |n3|

WhenN, > N;, theFxpFFT yields 3 dB higher accuracy. The 3
results are different when testing with the convolutional rule,
where thelntFFT and theFxpFFT provide essentially the
same accuracy for any value 8%.. When the inverse transform
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