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Abstract—In this paper, a concept of integer fast Fourier trans-
form ( IntFFT ) for approximating the discrete Fourier transform
is introduced. Unlike the fixed-point fast Fourier transform
(FxpFFT ), the new transform has the properties that it is an
integer-to-integer mapping, is power adaptable and is reversible.
The lifting scheme is used to approximate complex multiplications
appearing in the FFT lattice structures where the dynamic range
of the lifting coefficients can be controlled by proper choices of
lifting factorizations. Split-radix FFT is used to illustrate the
approach for the case of 2 -point FFT, in which case, an upper
bound of the minimal dynamic range of the internal nodes, which
is required by the reversibility of the transform, is presented and
confirmed by a simulation. The transform can be implemented
by using only bit shifts and additions but no multiplication.
A method for minimizing the number of additions required is
presented. While preserving the reversibility, the IntFFT is
shown experimentally to yield the same accuracy as theFxpFFT
when their coefficients are quantized to a certain number of bits.
Complexity of the IntFFT is shown to be much lower than that
of the FxpFFT in terms of the numbers of additions and shifts.
Finally, they are applied to noise reduction applications, where
the IntFFT provides significantly improvement over theFxpFFT
at low power and maintains similar results at high power.

Index Terms—Discrete Fourier transform, fixed-point FFT, in-
teger transforms, lifting scheme.

I. INTRODUCTION

T HE DISCRETE Fourier transform (DFT) is one of the
most fundamental operations in digital signal processing.

Because of the efficiency of the convolutional property, the DFT
is often used in linear filtering found in many applications such
as quantum mechanics [1], noise reduction [2], and image re-
construction [3]. However, the computational requirements for
completing the DFT of a finite length signal are relatively in-
tensive. In particular, if the input signal has length, directly
calculating its DFT requires complex multiplications (
real multiplications) and some additional additions. In 1965,
Cooley and Tukey introduced the fast Fourier transform (FFT),
which efficiently and significantly reduces the computational
cost of calculating -point DFT from to
[4]. Since then, there have been numerous further developments
that extended Cooley and Tukey’s original contribution. Many
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efficient structures for computing DFT have been discovered by
taking advantage of the symmetry and periodicity properties of
the roots of unity such as the radix-2 FFT, radix-4 FFT,
and split-radix FFT [6]. In this paper, since we mainly focus on
the fast structures of the DFT, the terms DFT and FFT will be
used interchangeably.

The order of the multiplicative complexity is commonly used
to measure and compare the efficiency of the algorithms since
multiplications are intrinsically more complicated among all op-
erations [5]. It is well-known in the field of VLSI that among the
digital arithmetic operations (addition, multiplication, shifting
and addressing, etc.), multiplication is the operation that con-
sumes most of the time and power required for the entire com-
putation and, therefore, causes the resulting devices to be large
and expensive. Therefore, reducing the number of multiplica-
tions in digital chip design is usually a desirable task. In this
paper, utilizing the existing efficient structures, a novel structure
for approximating the DFT is presented. This proposed structure
is shown to be a reversible integer-to-integer mapping called
Integer FFT (IntFFT ). All coefficients can be represented by
finite-length binary numbers. The complexity of the proposed
IntFFT will be compared with the conventional fixed-point
implementation of the FFT (FxpFFT ). Moreover, the perfor-
mances of the new transforms are also tested in noise reduction
problem.

The invertibility of the DFT is guaranteed by orthogonality.
The inverse (the IDFT) is just the conjugate transpose. In
practice, fixed-point arithmetic is often used to implement
the DFT in hardware since it is impossible to retain infinite
resolution of the coefficients and operations [6], [7]. The
complex coefficients of the transform are normally quantized
to a certain number of bits depending on the tradeoff between
the cost (or power) and the accuracy of the transform. However,
direct quantization of the coefficients used in the conventional
structures, including both direct and reduced-complexity (e.g.,
radix-2, radix-4, etc.) methods, destroys the invertibility of
the transform. The novel approach presented in this paper
guarantees the invertibility property of the transform while
keeping the coefficients of the forward and inverse transforms
to be finite-length binary numbers.

A. Previous Works

Recently, there has been a reasonable amount of attention
in trying to approximate the existing floating-point orthogonal
transforms such as the DCT [8]–[10] or DFT [11] with invert-
ibility property preserved. In [8], the eight-point DCT used in
the image and video coding standards is approximated by a

1053–587X/02$17.00 © 2002 IEEE
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brute-force technique, i.e., the transform coefficients are opti-
mized over the set of real integers1 by having the orthogonality
property (a system of nonlinear equations) as a constraint. The
same approach is extended to the case of the eight -point DFT
whose coefficients are selected from the set of complex inte-
gers [11]. Although this approach is simple and straight for-
ward, it is very difficult to extend the approach to the case of
large —imagine solving a big system of nonlinear equations.
In addition, once a set of coefficients is obtained, it is not trivial
as to how to adjust them for different transform accuracy unless
one reoptimizes the coefficients.

In [9] and [10], lifting factorization is proposed to replace
the orthogonal matrices appearing in the eight-point DCT
using, respectively, the fast structure and the Hadamard struc-
ture [12]. The resulting transforms are shown to be simple and
invertible, even though the lifting coefficients are quantized and
are power-adaptable, i.e., different quantization step sizes can be
used to quantize the lifting coefficients without destroying the
invertibility. In this paper, lifting factorization is proposed to be
used in the fast structures of the DFT where complex multipli-
cations are expressed in terms of liftings. The approach can be
used in many existing structures such as radix-2, radix-4, and
split-radix with arbitrary sizes. However, the split-radix struc-
ture will be used to illustrate the proposed method, which can
also be extended to other existing FFT structures as well.

B. Outline of the Paper

The next section reviews necessary backgrounds used in
the development of the paper including the discrete Fourier
transform and split-radix FFT, its fixed-point implementation,
and lifting scheme. Section III presents a method for converting
a complex multiplier into lifting structure. The dynamic range
at internal nodes of the FFT lattice structure is discussed in
Section IV. Section V discusses methods for optimizing the
complexity and limiting the dynamic range of the coefficients.
The accuracy and complexity of the proposed approach are
presented in Section VI. Section VII presents the use of the
IntFFT in noise reduction application and compares its
performance with theFxpFFT , and Section VIII concludes the
paper.

II. BACKGROUNDS

A. Discrete Fourier Transform and Its Fast Structure

The DFT of an -point discrete-time signal is defined
by

for (1)

where or, in vector-matrix form

(2)

where ,
, and is an ma-

1In this paper, we refer a real integer to a quantity whose real part has integer
value and whose imaginary part is zero. Similarly, a complex integer is defined
as a quantity whose real and imaginary parts have integer values.

trix with elements . Similarly, the IDFT can be
given by

for

(3)
which follows from the fact that is an orthogonal matrix, i.e.,

, where denotes complex conjugate transpose.
Discarding the factor 1/ in (3), it is clear that in order to cal-

culate one coefficient of the DFT or IDFT, it requirescom-
plex multiplications and complex additions. Therefore,
the total number of complex multiplications for computing an

-point DFT is . However, this direct computation is ineffi-
cient and can be significantly simplified by taking the advantage
of the symmetry and periodicity properties of the twiddle factor

. These properties are

• Symmetry property: ;
• Periodicity property: .

There are many existing fast structures to compute the DFT de-
pending on the length of the input. In this paper, the split-radix
structure that is suitable for input with length of will
be used to illustrate the proposed approach ofIntFFT . The
approach can also be applied to other structures such as radix-2
and radix-4 as well. We now briefly describe the split-radix al-
gorithm and its network structure.

1) Split-Radix FFT and Its Lattice Structure:Let us assume
that with . From (1), we get

(4)

and

(5)

(6)

for . It follows from (4) that the even-
indexed terms can be obtained by the -point DFT of
the new signal

for

Similarly, the first- and third-indexed terms can be expressed as
the -point DFT of two signals

for , where .
It is clear from (4)–(6) that the -point DFT coefficients of
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Fig. 1. Basic butterfly structure forN -point FFT using split-radix structure.

can be achieved by computing one/2-point DFT and two
/4-point DFTs for the new signals . The same procedure

can be iteratively applied to these smaller size DFTs until the
size is reduced to one. Fig. 1 shows the forward and inverse lat-
tice structures for calculating from and vice versa.
It is clear that the signals can be obtained from passing
through the orthogonal butterfly lattices

as indicated in Fig. 1. Similarly, the signals can be ob-
tained from passing through another orthogonal butterfly
lattices

and the twiddle factor . It should be noted that the multi-
pliers 1, , and in will not be counted for the number of
complex multiplications. Since the matrices and their com-
plex conjugate transposes map integers to integers, to obtain
theIntFFT , we only need to focus on the complex multipliers

, and their complex conjugates as will be discussed in de-
tails in the next section.

B. Fixed-Point Arithmetic Implementation

One of the factors that primarily affects the cost of the DSP
implementation is the resolution of the internal nodes (the size
of the registers at each stage). In practice, it is impossible to re-
tain infinite resolution of the signal samples and the transform
coefficients. Since the floating-point operation is very expen-
sive, these numbers are often quantized to a fixed number of
bits. Different formats of fixed-point representation of numbers
can be found in [7]. In this paper, the variables and are
used to denote the numbers of bits required to store the coeffi-
cients in the DFT calculation and the input signal, respectively.

Each addition can increase the number of bits by one, whereas
each multiplication can increase up to , where is the
number of bits of the multiplier. The nodes in latter stages re-
quire more bits than those in earlier stages to store the output
after each arithmetic operation without overflows. As a result,
the number of bits required to store the results grows accumu-
latively as or the number of stages increases. In general, the
number of bits at each internal node is fixed to a certain number
of bits. Call this number . The most significant bits (MSBs)

Fig. 2. Lifting scheme that allows perfect reconstruction.

of the result after each operation will be kept up to bits, and
the tail will be truncated. However, this conventional fixed-point
arithmetic destroys the invertibility of the transform because the
DFT coefficients are quantized. This paper presents a novel way
to quantize the DFT coefficients that preserves the invertibility
property.

C. Lifting Scheme

The lifting scheme has been proposed to be a tool in con-
structing wavelets and perfect reconstruction (PR) filterbanks
[13], [14]. Biorthogonal filterbanks having integer coefficients
can be easily implemented and can be used as integer-to-integer
transform. Lossless image coding is an example of applications
that uses such a transform.

Consider the following two-channel system in Fig. 2. The two
inputs and are fed into a two-port network that contains
operators and . The first branch, which is operated by ,
is calleddual-lifting, whereas the second one, which is operated
by , is calledlifting, as indicated in the figure. One can im-
mediately see that the system is PR for any choices ofand

. Since the operators and can be nonlinear, rounding
or flooring operations, etc., can be used without destroying the
PR property.

III. CONVERTINGCOMPLEX NUMBERS TOREAL LIFTING STEPS

Recall that all the coefficients appearing in the FFT and IFFT
structures are complex numbers with magnitude one, i.e., every
coefficient can be expressed as, where is some real number.
Since these coefficients are scalar with magnitude one, the in-
verses are simply their complex conjugates. However, if a co-
efficient is quantized, the inverse of the new coefficient is no
longer guaranteed to be its complex conjugate. Specifically, let

be a complex number with magnitude one, i.e.,



610 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 50, NO. 3, MARCH 2002

Fig. 3. Butterfly structure for implementing a complex multiplication.

where and are real numbers, and . Let be the
quantized version of, i.e.,

where and are finite-word length approximations ofand
, respectively. Hence, the reciprocal of is

In general, is not one, although . Instead, may
not even be a finite word-length complex number, even though

is. This is the reason why the conventional fixed-point arith-
metic does not preserve the PR property.

The PR property can be preserved via the lifting scheme. Each
complex multiplication is equivalent to four real multiplications.
Specifically, let be a complex number, and hence,

, or in the vector-matrix
form

(7)

where

Fig. 3 shows the butterfly structure of a single complex multi-
plication. Notice that has magnitude one if and only if is an
orthonormal matrix. Assuming that with (if

, then or , which does not need to be quantized),
it is easy to see that can be decomposed into three lifting steps
[13].

(8)

Fig. 4 illustrates the conversion from one complex multiplica-
tion to three-step lifting scheme. In order to distinguish the co-
efficients in the lifting structure from the original coefficients
and , we now call the new coefficients and lifting
coefficientsand refer the original coefficientsand asbutterfly
coefficients.

Fig. 4. Lifting structure for implementing a complex multiplication and its
inverse.

The advantages of this factorization are twofold. First,
the number of real multiplications is reduced from four to
three, although the number of real additions is increased from
two to three. Second, it allows for quantization of the lifting
coefficients and the quantization of the result of each multi-
plication without destroying the PR property. To be specific,
instead of quantizing directly, the lifting coefficients and

are quantized, and therefore, its inverse also
consists of three lifting steps with the same lifting coefficients
but with opposite signs. Further than that, nonlinear operators
can also be applied to the product at each lifting step. Fig. 5
shows four equivalent lifting structures for approximating,
where indicates a nonlinear operator such as rounding or
flooring operation. Each structure has its own advantage for
optimizing the computational complexity of the transform, as
will be discussed in the next section.

A. Eight-Point Split-RadixIntFFT

This subsection demonstrates how to construct an eight-point
IntFFT based on the split-radix structure. Fig. 6 shows the lat-
tice structure of the eight-pointIntFFT , where the twiddle fac-
tors and are implemented using the proposed conver-
sion. Note that instead of using the one in Fig. 5(a), the lower
lifting factorization is obtained from the structure in Fig. 5(b),
of which the lifting coefficients are between1 and 1. This de-
tail will be discussed in Section V. The rounded boxes at the
lifting coefficients represent quantization of both the lifting co-
efficients and the results after multiplications.

It is clear from Fig. 6 that there are 24 butterflies with co-
efficients 1, 1, , and that do not require any multiplica-
tion or addition. These 24 butterflies can be implemented using

complex adders or 96 real adders. The rest of the
computation is based on the binary representation of the lifting
coefficients and .

IV. RESOLUTION OF THEINTERNAL NODES

Recall that in the implementation of FFT and IFFT, all the
coefficients are of the form , where
for some integer . These twiddles can be replaced by lifting
scheme as

(9)
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Fig. 5. Four equivalent lifting structures with quantization for implementing a complex multiplication.

Fig. 6. Lattice structure of eight-pointIntFFT using split-radix structure.

where

(10)

, and . Define to be a nonlinear ap-
proximation of , where the product at each lifting in is
quantized by the nonlinear operator, as depicted in Fig. 5(a).
Let denote the number of bits used by each quantizer. Ac-
cording to Fig. 1, it is obvious that the FFT and IFFT can be
approximated by lattice structures with finite word-length (in-
teger) coefficients. The butterfly matrices and do not
need to be changed since their coefficients are integers, and they
map integer inputs to integer outputs (with possibly an increase

in the number of bits). What remains to be done is the conver-
sion of each twiddle multiplier into lifting steps, as dis-
cussed in the previous section. Since the lifting structure is re-
versible regardless of the presence of quantization, the overall
transform will also be reversible. Let us call the new transform
and its inverse transformIntFFT andIntIFFT , respectively.
Because theIntFFT andIntIFFT have integer coefficients,
multiplierlessIntFFT andIntIFFT can be accomplished by
replacing each real (integer) multiplication by a number of addi-
tions. The number of additions for each multiplication depends
on the number of 1s appearing in the binary representation of
the multiplier.

Similar to the case ofFxpFFT andFxpIFFT , let us define
and , respectively, to be the number of bits used to quan-

tize each lifting coefficient and the size of the registers used to
store the value at each node, i.e., input and output nodes of each
of the butterflies and and the result after each lifting step.
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Fig. 7. Statistical model of lifting scheme used in a complex multiplier.

Although theIntFFT produces a reversible integer-to-integer
mapping, the number of bits used to represent the outputs must
be greater than that used for the inputs. Indeed, according to
Fig. 1, this number grows internally from the left to the right
of the forward transform. The possible maximum value of this
number defines the minimum value of , , which allows
the transform to be reversible. Each butterfly matrix or
can increase the resolution of its input by up to one bit. Like-
wise, each lifting step used in the approximation of the twiddle
multipliers can also increase the resolution of the signals. In this
section, we will estimate an upper bound of for the case
of using the split-radix structure. In our construction
of IntFFT , each twiddle factor is approximated by two liftings
and one dual lifting (or two dual liftings and one lifting). In order
to simplify the analysis, let us model each twiddle factor as in
Fig. 7, where are random noise resulting from the quantiza-
tion of the lifting coefficient and the quantization of the product
after multiplication by the lifting coefficient. Let us assume that

1) all lifting coefficients are between1 and 1;
2) , .

The first assumption can be reached by selecting a proper alter-
native lifting factorization shown in Fig. 5. In the next section,
we will show that at least two of the four equivalent structures
have lifting coefficients between1 and 1. The second assump-
tion is equivalent to that and are sufficiently large.

Theorem IV.1:The lifting implementation of each twiddle
factor increases the resolution of its input by, at most, one bit.

Proof: See the Appendix.
It should also be noted that the original butterfly structure

guarantees that the dynamic range of the output will be less than
twice that of since

Now, we are ready to estimate an upper bound of . For
convenience, let be for the case of . It is
clear that , where is the resolution of the input.
Since a two-point FFT can be constructed by a butterfly matrix

, . When , the two twiddle multipliers
are 1 and , which do not increase the number of bits. Thus,

. In general, the twiddle factors can be com-
plex irrational numbers that also increase the resolution of the
internal nodes. When , according to Fig. 1, it is easy to
see that

(11)

which implies the following theorem.
Theorem IV.2: and

, where .
Proof: The proof can be easily done by induction.

V. OPTIMIZING THE LOW-POWERMULTIPLIERLESSIntFFT

In the previous section, we have discussed how to convert
a complex multiplication with the multiplier having magnitude
one into lifting scheme and how to estimate an upper bound of

. The resulting conversion allows each complex multipli-
cation to be approximated by finite word-length lifting coeffi-
cients. Each of these quantized lifting multipliers can be con-
structed by a number of additions and shifts depending on the
number of 1s in its binary representation. This section discusses
several methods for optimizing the lifting coefficients with dy-
namic range constrained. The goal is to reduce the number of
additions by optimally using an alternative lifting factorization.

A. Controlling the Range of Lifting Coefficients

Consider the three lifting coefficients of in (10). Since
the value of can be arbitrarily small, the dynamic range of

can be arbitrarily large. If ,
then , and

If , , which
is not desirable. Hence, the absolute values of the lifting coef-
ficients can be controlled to be less than or equal to one by re-
placing by as

(12)

When

and hence, the new lifting coefficients fall between1 and ,
as desired. Fig. 5(b) shows the equivalent block diagram for
(12).

B. Another Choice of Lifting

In the previous subsection, we have presented an alterna-
tive solution if the original lifting coefficients have magnitude
greater than one. This is because of the fact that multiplying by

1 does not increase the complexity of the algorithms (except
one negation is used). It should be noted that to multiply by
or , one only needs to switch between the real and imaginary
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TABLE I
POSSIBLE LIFTING STRUCTURES FOREACH VALUE OF � WITH ALL

LIFTING COEFFICIENTSBETWEEN�1 AND 1

parts of the input with one sign changing, and thus, there is no
addition or multiplication required. Utilizing this fact, another
choice of lifting factorization can be achieved as

(13)

where . Fig. 5(c) shows an equivalent block
diagram described by (13). Similar to the previous case, if

, , and hence, . However,
if , , and the magnitude of the lifting
coefficient will be larger than one. Therefore,

should be replaced by as

(14)

Fig. 5(d) shows an alternative block diagram described by (14).
To summarize, for each value of, there are two out of four

possible lifting factorizations (see Fig. 5) where all the lifting
coefficients fall within 1 and 1, as summarized in Table I.

C. Fewest Addition Optimization

We have seen different choices in parameterizing the lifting
coefficients for the FFT twiddle coefficients. Without any quan-
tization of the lifting coefficients and the incoming signals, each
twiddle coefficient, as presented in Fig. 5, requires three real
multiplications and three real additions. However, forIntFFT
andIntIFFT , the lifting coefficients are quantized to bits,
and the number of additions required for each multiplication can
be counted from the number of 1s presented in the binary rep-
resentation of the quantized multiplier. The structure with the
smallest number of 1s appearing in the quantized coefficients
should be chosen so that the total number of required additions
is minimized.

Taking into account that the complexity of one subtraction
is equivalent to that of one addition and should be counted as
an addition, the optimal representation is not necessarily rep-
resented as a single binary number, but it can be a difference

between two binary numbers, as long as the total number of 1s
is less. For example, the 4-bit representation of 7 can be given
by

or

One can see that in the left binary representation of 7, there
are three 1s, and hence, two additions are required to complete
the multiplication. On the other hand, there are only two 1s ap-
pearing in the right representation, and hence, only one addition
(subtraction) is needed. Table II summarizes the conventional
and optimal binary representations of the 16-bit lifting coeffi-
cients used in the split-radix 16-point FFT, where the twiddle
factors are constructed using the lifting structures in Fig. 5(a)
or (b). Similarly, Table III summarizes the conventional and
optimal binary representations of the 16-bit lifting coefficients
used in the split-radix 16-point FFT, where the twiddle factors
are constructed using the lifting structures in Fig. 5(c) or (d).
In order to minimize the number of additions used to represent
each twiddle factor , the binary representation with less total
number of 1s (and thus the corresponding structure) will be se-
lected between Tables II and III. For example, the numbers of 1s
used to represent from Tables II and III are
and , respectively. Hence, the structure in Fig. 5(c)
should be used to implement in order to achieve the min-
imum number of additions.

VI. PERFORMANCES ANDCOMPLEXITIES

A. Minimal for PR Systems

In order for theIntFFT to be invertible, the number of the
internal node bits and, thus, the number of bits of the output must
be large enough since, after each addition, the dynamic range of
the output will be increased by at most one bit. This number
directly depends on the size of the FFT and the resolution of the
input, as discussed in Section IV. In this section, the following
experiment is carried out. Random signals with the resolution
( ) of 16 bits are used as the input of the-point IntFFT
for . Each lifting step contains a 16-bit
real multiplier, i.e., and a 16-bit uniform quantizer.
For a fixed value of , theIntFFT followed by IntIFFT of
each random input is computed and compared with the original
input. is determined by the smallest , which causes the
output to be the same as the input, i.e., for each input, is
estimated. The maximum value of for different inputs is
used to represent of this particular case ( , , and
resolution of the quantization ). It should be noted that the
upper bound of presented in Theorem IV.2 only depends
on and but does not depend on or the resolution of
the quantization . Fig. 8 shows the estimated obtained
from the experiment for different values of and the upper
bound calculated using Theorem IV.2. It is evident that is
a nondecreasing function of experimentally and theoretically.
The estimated values of fall below the upper bound, as
expected.

B. Accuracy of theIntFFT

In this section, the performances of theIntFFT are
experimentally evaluated and compared with the conven-
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TABLE II
EXAMPLE OF OPTIMAL 16-BIT BINARY REPRESENTATION FOR THEQUANTIZED LIFTING COEFFICIENTS OF THESTRUCTURES

IN FIG. 5(a)OR (b) USED IN THE SPLIT-RADIX 16-POINT FFT

TABLE III
EXAMPLE OF OPTIMAL 16-BIT BINARY REPRESENTATION FOR THEQUANTIZED LIFTING COEFFICIENTS OF THESTRUCTURES

IN FIGS. 5(c) OR (d) USED IN THE SPLIT-RADIX 16-POINT FFT

Fig. 8. Number of internal-node bits required for anN -point Split-Radix
IntFFT to be invertible when the signals haveN = 16 bits.

tional FxpFFT . The experiment is performed for the case of
. The input signal is quantized to 16 bits, whereas the

internal nodes of both structures are set to 27 bits. Obtained
from Theorem IV.2, 27 bits will ensure that theIntFFT is
reversible and, thus, zero reconstruction error. Fig. 9 compares
the errors of the Fourier transform using theFxpFFT and the
IntFFT for different values of . In the structure of the
FxpFFT , is the number of bits used to quantize the twiddle
factors, whereras in case of theIntFFT , is the number of
bits used to quantize the lifting coefficients obtained from the

Fig. 9. Comparison of the accuracy of the conventional fixed-point arithmetic
FFT and the newIntFFT measured in frequency domain for 256-point
transform.

structures in Fig. 5. It is evident that the proposedIntFFT
yields approximately the same accuracy as that of the conven-
tional FxpFFT when . The errors start to converge
when , where the error of theIntFFT approximately
3 dB higher. Fig. 10 shows the reconstruction error for the case
of FxpFFT andFxpIFFT , whereas the reconstruction error of
the proposedIntFFT andIntIFFT remains zero.

Although the Fourier transform is a linear operator because of
the nonlinearity in the quantization at each lifting, the resulting
IntFFT becomes nonlinear. Therefore, the convolutional rule
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Fig. 10. Reconstruction error of the conventional fixed-point arithmetic FFT
for 256-point transform.

Fig. 11. Comparison of the accuracy of the conventional fixed-point
arithmetic FFT and the newIntFFT based on the convolutional rule for
256-point transform.

does not apply. Likewise, in the case ofFxpFFT , the butterfly
coefficients also have to be quantized, which makes the resulting
transform nonlinear as well. In order to simulate the distortion
after using the convolutional rule, another experiment is con-
ducted. Using the same parameters as in the previous experi-
ment, two input signals are randomly generated. The Fourier
transforms of the two signals are then calculated using the ideal
FFT: IntFFT andFxpFFT . For each case, the inverse Fourier
transform of the product of the two Fourier transforms is then
calculated. The difference between the resulting signal and the
one obtained by using the ideal FFT and IFFT defines the error
of the convolutional rule. Fig. 11 compares the error of the con-
volutional rule of theFxpFFT to theIntFFT . Unlike the case
of the forward transform, it is evident from Fig. 11 that although
two transforms (and their inverses) are nonlinear, the error of
the convolutional rule can be decreased by increasing the res-
olution of the coefficients ( ). At , one can see that
the error is less than 100 dB, which is acceptable in general

Fig. 12. Comparison of the accuracy of the conventional fixed-point arithmetic
FFT and theIntFFT measured in frequency domain for 256-point transform
when the signal is complex exponential.

TABLE IV
COMPUTATIONAL COMPLEXITIES OF THESPLIT-RADIX FFT AND THE INTEGER

VERSIONS(FxpFFT AND IntFFT ) WHEN THE COEFFICIENTSARE

QUANTIZED TO N = 10 BITS

since it is below the quantization error (97 dB for the case
of bits). It should also be noted that both structures
(butterfly and lifting in each twiddle coefficient) create approx-
imately the same amount of error to the convolutional rule.

In the above experiments, random vectors are used to test the
performances of theIntFFT . It is also interesting to compare
the results when the signal is a pure sinusoidal. In this experi-
ment, a complex exponential vector with relative frequency 25.3
is used to test the accuracies of the two approximation methods.
Fig. 12 shows the resulting errors of the forward FFT. In this
case, it is found that the accuracy of theIntFFT is approxi-
mately the same as that of theFxpFFT when and is
approximately 3 dB lower when . This result is con-
sistent to the case of random noise input.

C. Complexity of theIntFFT

In this section, the method for minimizing the number
of adders discussed in Section V is used to estimate the
computational complexities ofFxpFFT and IntFFT of
different sizes. In particular, the numbers of 1s used in the
10-bit binary representations of the butterfly coefficients in
FxpFFT and of the lifting coefficients inIntFFT are counted.
Table IV summarizes the numbers of real multiplications and
real additions needed to perform -point split-radix FFT
[16] and the numbers of real additions and shifts required in

-point FxpFFT and IntFFT . From Table IV, the numbers
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Fig. 13. Noise reduction system. (a) Time-domain processing. (b) Frequency-
domain processing.

of additions ofFxpFFT andIntFFT are approximately 100%
and 50% more than that of the exact FFT; however, no real
multiplication is needed. Comparing betweenFxpFFT and
IntFFT , the number of additions ofIntFFT is 23–27% less
thanFxpFFT , whereas the number of shifts is 41–42% less.

VII. A PPLICATION IN NOISE REDUCTION

The performances of theIntFFT and theFxpFFT are tested
and compared in noise reduction problem. In Fig. 13(a), the
signal of interest with a known power spectral density
(PSD) is corrupted by an additive independent Gaussian
noise with a PSD , resulting in a noisy signal

The received signal is then optimally filtered by a filter
, resulting in an estimate

where denotes convolutional operator. Since the system is
linear time invariant (LTI), the cost in calculating the convolu-
tion between and can be reduced by taking the ad-
vantage of the convolutional rule. Fig. 13(b) shows an equiva-
lent block diagram of the noise reduction system processed in
frequency domain. The Fourier transform of the received signal

is calculated and multiplied by the filter frequency re-
sponse . The signal estimate is then obtained by calcu-
lating the inverse Fourier transform of the product

It is easy to show that the optimal filter that minimizes
the mean square error can be given by [2]

(15)

where , , and are the power spectrum densi-
ties of , , and , respectively. Note that in the second
equation of (15), we have used the fact that and are
independent.

In this experiment, the signals and are generated
by two second-order random processes described by

Fig. 14. Mean square error of the signal estimate for different resolutions of
the coefficients.

where and are independent white Gaussian noises.
The variances of and are chosen so that the signals

and have unit variance and, hence, the SNR at the re-
ceived signal is 0 dB. This mixtured signal is divided
into blocks, each of which has samples, i.e., the size of
the FFT and IFFT is 256. The comparison begins by processing
the noise reduction algorithm as depicted in Fig. 13(b), where
the FFT and IFFT blocks are performed by theFxpFFT and
the IntFFT (and their inverses). The butterfly coefficients of
FxpFFT and the lifting coefficients ofIntFFT are quantized
to bits for different values of . The internal node is
set to 24 bits.

Fig. 14 shows the mean square error between the signal es-
timate and the original signal over the range of .
The solid line is obtained by using theFxpFFT and its inverse,
whereas the dash line is obtained by using theIntFFT and its
inverse. As increases, the mean square errors of both cases
decrease, approaching the dash-dot line, which is when the exact
FFT and IFFT are used. It is evident that when the coefficients
are severely quantized ( ), the mean square error in
the case ofIntFFT is lower than that in the case ofFxpFFT by
up to 18%. This is because when is small, the reconstruction
error of theFxpFFT and its inverse tends to dominate the recon-
struction signal. On the other hand, at high resolution ( ),
bothIntFFT andFxpFFT yield similar results, which are very
close to the case of the exact FFT as indicated in the enlarged
portion of the curves in Fig. 14.

VIII. C ONCLUSION

In this paper, we have presented a concept ofIntFFT ,
which can be used to construct FFT with integer coefficients.
It provides a new method for approximating the DFT without
using any multiplication and can simply be applied to the case
of large-size DFT. Unlike theFxpFFT , which is the fixed-point
arithmetic version of FFT, theIntFFT is reversible when
the coefficients are quantized. Its inverseIntIFFT can be
computed with the same computational cost as that of the
forward transform. The new transform is suitable for mobile
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computing and any handheld devices that run on batteries since
it is adaptable to available power resources. Specifically, the co-
efficients appearing in the proposed structures can be quantized
directly for different resolutions, i.e., different computational
costs, while preserving the reversibility property.

Although a large class of FFT structures such as radix-2,
radix-4, and split-radix can be approximated by this approach,
the split-radix structure is used to illustrate the technique. An
analysis of the dynamic range of the internal nodes is presented.
Using an appropriate choice of lifting factorizations, it is proven
that lifting approximation of a complex multiplier can increase
the resolution of the input by at most one bit. An upper bound
of the dynamic range of the internal nodes is estimated and con-
firmed by a simulation for the case of the split-radix FFT. The
computational complexity of the resulting transform is calcu-
lated by the numbers of real additions and shifts. A method for
minimizing the number of additions is presented and used to
compare the computational costs ofIntFFT andFxpFFT . Ac-
cording to the simulation, the complexity ofIntFFT is lower
than that ofFxpFFT by a significant margin.

The accuracy of the transforms is compared experimentally.
It is evident from the simulations that bothIntFFT and
FxpFFT have approximately the same distortion from ideal
FFT when the resolution of the input is greater than .
When , theFxpFFT yields 3 dB higher accuracy. The
results are different when testing with the convolutional rule,
where theIntFFT and theFxpFFT provide essentially the
same accuracy for any value of . When the inverse transform
is performed after the forward transform, fixed-point arithmetic
approach results in reconstruction error, whereas the proposed
approach can reconstruct the input perfectly for any fixed res-
olution of the coefficients. Finally, these two implementations
are tested in noise reduction application. At low power, i.e.,
the coefficients are quantized to low resolution, theIntFFT
yields significantly better results than theFxpFFT , and they
yield similar results at high power.

APPENDIX

PROOF OFTHEOREM VI.1

According to Fig. 7, we get

In order to prove the statement, it is sufficient to show that
. Since

If has finite word length, the quantization of
must be less than or equal to , i.e.,

Hence

From the expression of , we have

It is easy to see that if and only if , and
thus, . Hence
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