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Native Cellular Fluorescence and Its 
Application to Cancer Prevention 
Stimson P. Schantz,' Howard E. Savage,1 
Peter Sacks,1 and Robert R. Alfano2 

1Department of Surgery, Memorial Sloan-Kettering Cancer Center, 
New York, New York; 2Department of Physics and Electrical 
Engineering, City College of New York, New York, New York 

Native cellular fluorescence (NCF) represents the innate capacity of tissues to absorb and emit 
light of specified wavelengths. Recent advances in optical engineering and computer technology 
have provided the opportunity to measure NCF characteristics of various tissues in vivo. This 
report will briefly review the current status of NCF analysis of various neoplastic tissues. The 
status of investigations involving the upper aerodigestive tract will be discussed. Though initial 
results demonstrate that neoplastic tissues can be discriminated from normal mucosa by NCF 
analysis, the biologic basis of this difference remains uncertain. This report will also emphasize 
that the ability to screen for cancer in aerodigestive mucosa may be enhanced through the 
assessment of multiple emission and excitation wavelengths. The true nature of the cellular 
fluorophores responsible for these mucosal spectral characteristics should be more fully defined 
in coming years. - Environ Health Perspect 105(Suppl 4):941-944 (1997) 
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The capacity to effectively screen for 
premalignant and early invasive cancers of 
the upper aerodigestive tract and lung 
should lead to improved survival. 
Numerous strategies developed over the 
past 2 decades to achieve this goal include 
novel immune and molecular cytological 
techniques, the development of circulating 
tumor markers, and advances in diagnostic 
radiology (1-7). It is evident from the 
review of these various approaches that 
optimal methods must still be established. 

The need for improved sensitivity and 
specificity in cancer diagnosis has led to 
interest in native cellular fluorescence 

(NCF), i.e., the innate capacities of tissues 
to absorb and transmit light, as a means of 
distinguishing normal from neoplastic tis- 
sue. It has been well recognized for many 
years that numerous subcellular compo- 
nents, termed fluorophores, were capable 
of emitting light of specified wavelengths. 
Such fluorophores include various pro- 
teins, coenzymes, micronutrients, and 
even DNA (8). The concept that qualita- 
tive and quantitative differences in cellular 
fluorophores would distinguish diseased 
from normal tissue in vivo had been 
explored since the 1950s. Schaffer and 
Sacks, for instance, noted that assessment 

of oral cavity mucosa by means of a 
Wood-Light ultraviolet lamp would dis- 
tinguish individuals with riboflavin defi- 
ciency (9). By providing nutritional 
supplements, those authors noted a rever- 
sal of the abnormal mucosal fluorescence 
and thus demonstrated the clinical utility 
of this approach. The spectral characteris- 
tics of riboflavin have been previously 
described (8,10). 

In the mid-1980s investigators began to 
apply the principle of NCF to the assess- 
ment of neoplastic tissue. Alfano et al. 
(11,12) and Glassman et al. (13) analyzed 
breast and lung tissues for NCF patterns in 
vitro. Glassman et al. (13) utilized a xenon 
lamp to generate a 300-nm excitation 
beam and then quantitated 340:440-nm 
emission ratios. They noted that neoplastic 
tissue contributed significantly elevated 
340:440 nm ratios compared to nonmalig- 
nant tissues. Similar observations regarding 
the 340:440-nm ratio were noted for cervi- 
cal cancers (13). Numerous investigations 
over the past several years have explored 
the use of NCF technology for screening of 
diseases of the colon, cervix, and lung 
(Table 1) (14-19). Various laser sources 
were utilized, including helium-cadmium 
and nitrogen-pulsed lasers. The analysis of 
fluorescence emission has pointed to 
abnormalities at various wavelengths, 
including 380-, 450-, 520-, and 680-nm 
emission. Overall sensitivity and specificity 
of NCF have ranged from 85 to 95% and 
80 to 85%, respectively. Indeed, several 
authors claim that NCF analysis was supe- 
rior to more standard approaches, includ- 
ing physical examination and routine 
light-based endoscopy (17,18). 
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Table 1. Demographic characteristics of cases and controls. 

Native cellular fluorescence characteristics 
Organ system, reference Excitation source Wavelength analysis Sensitivity, %/specificity, % 

Colon 
Kapadia et al. (15) HC Multiwavelength 100/99 
Cothren et al. (14) PN 680 versus 460 nm 100/94 
Schomacker et al. (16) PN 12 wavelengths 80/92 

Lung 
Lam et al. (17) HC 630:520-nm ratio 73/94 

Cervix 
Ramanujam et al. (18) PN 450-nm emission 87/75 

Esophagus 
Vo Dinh et al. (19) PN 480-nm emission 

640-nm emission NS 
Head and neck 

Franchesci et al. (21) X 450-nm emission NS 
Kolli et al. (22) X Multiwavelength NS 

Abbreviations: HC, helium cadmium; PN, pulsed nitrogen; NS, not stated; X, xenon. 
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In Vivo Analysis of Upper 
Aerodigestive Mucosa 
Initial investigations on upper aerodigestive 
cavity mucosa, in both humans and animal 
model systems, have recently been reported 
(20-24). The oral cavity lends itself to 
such studies for several reasons (20). One 
is that the relationship between envi- 
ronmental exposures and diseases of the 
oral cavity has been well documented. 
Approximately 90% of individuals with 
cancer at this site will give a past or current 
history of tobacco exposure. The oral cav- 
ity is readily examined during a routine 
office or dental visit, thus requiring no spe- 
cial preparation or patient discomfort. 
Multiple examinations on a large popula- 
tion can then be performed to derive the 

significance of a particular screening strat- 

egy. In addition, a well-defined premalig- 
nant state, termed leukoplakia, can be 
identified within the oral cavity. This con- 
dition has facilitated our understanding of 
neoplastic progression not only within the 
oral cavity but in other epithelial tissues as 
well. Finally, it is well known that patients 
with one oral cavity cancer are at risk of a 
second cancer. This has given rise to the 

concept of field cancerization, i.e., the the- 
ory that all tissues exposed to a particular 
carcinogen will be at risk for malignant 
transformation and that such tissues will 

progress in various stages toward invasive 
disease (25,26). The question remains as 
to the most appropriate way to screen for 
multifocal diseases within such individuals. 

To our knowledge, only a few studies 
have addressed the NCF characteristics of 
oral cavity neoplasias in vivo. Franchesci et 
al. assessed 13 tongue cancers and con- 
tralateral normal mucosa by means of a 

xenon-lamp excitation source (21). An 
excitation scan at 450-nm emission was 
utilized. This scan varies the excitation 
wavelength over a range of 280 to 430 nm. 
Optimal excitation wavelengths capable of 

generating 450 nm emission can then be 
established. Using Fourier transform 
analysis, the authors noted a significant 
difference between tongue lesions and con- 
tralateral normal mucosa (21). A recent 
study by Kolli et al. (22) has extended this 
observation and showed that fluorescence 
characteristics of oral cavity cancers also 
involved the abnormal absorption and 
emission of other wavelengths, including 
340-, 380-, and 440-nm wavelengths. The 
choice of these wavelengths was based in 

part on previous in vitro and in vivo 
studies, which demonstrated that each was 
capable of distinguishing neoplastic from 

nonneoplastic tissues. Furthermore, each 

wavelength can be ascribed to particular 
fluorophores, which may differ in both 

quantitative and qualitative terms in tissues 
in varying stages of progression from nor- 
mal to invasive disease (Table 2) (8). 

The preponderance of studies, therefore, 
have demonstrated that neoplastic tissues 
can be discriminated from normal epithe- 
lial tissues within an individual patient. 
The optimal wavelengths for either excit- 

ing tissue or measuring emission, however, 
have yet to be defined. Likewise, consider- 
able variance in the means of analyzing 
spectral profiles exists among studies 
(13-18,22). Methods include the utiliza- 
tion of absolute intensity, various transfor- 
mations of data, multivariate logistic 
regression models, and other normalization 
procedures to best predict the presence of 
disease. No doubt, part of the confusion 
stems from the complexity of both the car- 

cinogenisis process and fluorescence deter- 
minants. It is clear, for instance, that wide 
variance in NCF characteristics exists in 
the normal mucosa of various individuals 
(18,21,22). The biologic basis for these 
differences is unclear. However, differences 
within an individual will be more informa- 
tive than differences between individuals. 
Attempts to define a particular algorithm 
for predicting a diseased state, though 
informative, will have limited clinical value 
if analysis is confined to the use of a single 
excitation wavelength. 

Current results support the use of 
multiple excitation and emission profiles in 

defining a particular tissue. Composite 
results may more accurately represent the 
state of health of a given tissue than will 
the analysis of a single wavelength. The 
clear application of this principle to cancer 

screening in vivo needs to be defined. Our 
efforts have been to explore the biologic 
basis for NCF within aerodigestive mucosa 
through the use of various laboratory 
model systems. 

Animal Studies on Upper 
Aerodigestive Mucosa 
Several animal models have been utilized to 
assess the ability of NCF to distinguish car- 

cinogen-induced alterations within exposed 
tissue (23,24). Glasgold et al. utilized a 

Sprague-Dawley rat model to assess alter- 
ations (24). In this well-defined cancer 
model, Sprague-Dawley rats are injected ip 
with a 5% solution of N-nitrosomethyl 
benzylamine (NMBA). Following 15 
weeks of injections, the majority of rats 
will develop gross evidence of esophageal 

Table 2. Spectral characteristics of major fluorophores. 

Wavelength, nm 
Fluorophores Excitation Emission 

Proteins and amino acids 
Tryptophan 287 348 
Collagen 360 405 
Elastin 290 340 
Porphyrin 440 630 

Enzymes and coenzymes 
NADH 325-350 440-462 
Riboflavin 450 520-535 

disease consisting of either adenomas or 
invasive cancers. In the initial studies by 
Glasgold et al. (24), NCF characteristics 
of the rat esophageal mucosa were demon- 
strated at varying times after initial 
exposures. Two spectral profiles were dis- 
cussed-the 380- and 450-nm excitation 
scans. Spectral alterations become consis- 
tently apparent after 5 weeks of NMBA 
exposure. Indeed, in several instances fluo- 
rescence alterations were noted as early as 
2 weeks (24). 

The above study provided evidence 

regarding the determinants of spectral 
alterations as well. Though changes in both 
the 380- and 450-nm excitation profiles 
occurred at approximately the same time, 
each reflected a different component of the 

esophageal wall. In the 380-nm scan, con- 
tinued carcinogen exposure led to progres- 
sive increases in the 290:330-nm ratio 

(Figure 1). This decrease was directly pro- 
portional to the increasing thickness of the 

esophageal mucosa, which occurred during 
malignant transformation. We suggested 
that the loss of the 330-nm excitation peak 

1000- 

750- 

c 
a, 2 500- 

250- 
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Figure 1. Representative excitation scan of an NMBA- 
induced esophageal carcinogenesis model within 
Sprague-Dawley rats. Rats were exposed to saline 
(control) or NMBA for 7 and 90 days, respectively. 
Fluorescence analysis reveals progressive loss of 
intensity of the 330-nm peak relative to the 290-nm 
peak with continued exposure. Reprinted from 
Glasgold et al. (24), with permission. 
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was secondary to decreased excitation of 
collagen within stroma. As the mucosa 
thickens, less of the excitation beam pene- 
trates the stromal-mucosal interface. In 
support of this conclusion, layers of the 
esophageal wall were separated by 
treatment with versene. The 330-nm exci- 
tation peak emitted solely from the pure 
stromal preparation. No peak could be 
generated by exciting only mucosal cells. 
Data supported previous observations by 
Schomacker et al., who examined human 
colon tissue (15). These researchers 
demonstrated that in vitro layering of 
mucosal tissue on a stromal bed decreased 
collagen signaling. 

In contrast to the 380-nm excitation 
scan, alterations in the 450-nm excitation 
induced by carcinogen exposure emanated 
entirely from esophageal mucosa (24). 
These changes became evident as early as 
2 weeks after NMBA exposure and long 
before gross pathologic changes were noted. 
These data demonstrate that multiwave- 
length assessment of esophageal mucosa, 
i.e., the use of multiple excitation wave- 
lengths and the measurement of multiple 
emission characteristics, will define differ- 
ent histoarchitectural elements within dis- 
eased mucosa. The study also demonstrates 
that NCF alterations occur very early in 
malignant transformation and long before 
gross malignancy or even premalignant 
changes can be identified. These results 
support the use of NCF characteristics as a 
means of screening for preclinical disease. 
They also provide a basis for monitoring 
the impact of prevention strategies designed 
to halt or reverse the neoplastic process. 

In Vitro Studies of Upper 
Aerodigestive Mucosa 
The biologic basis for NCF characteristics 
of upper aerodigestive mucosa has been 
explored through in vitro analysis (27-29). 
The premise of these studies is that precan- 
cerous alterations within aerodigestive 
mucosa that precede clinically apparent 
disease will be characterized by abnormal 
proliferation and differentiation. Our 
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Figure 2. Representative normalized excitation scan 
(excitation 240-430 nm, 450 nm) of control (solid line) 
and treated (dotted line) A431 carcinoma cells. A431 
cells were treated in the presence (solid line) or absence 
(dotted line) of 100 ng/ml of epidermal growth factor 
(EGF). EGF induced inhibition of growth at this concentra- 
tion. Reprinted from Zhang et al. (28), with permission. 

approach has been to characterize fluores- 
cence abnormalities that reflect that process. 
Using three cell systems consisting of 3T3 
fibroblasts, A431 squamous carcinoma 
cells, and short-term cultures of normal 
oral epithelium, proliferation rates were 
altered by various growth conditions (28). 
Proliferation rates were measured by cell 
count, tritiated thymidine incorporation, 
and cell-cycle analysis by flow cytometry. A 
characteristic spectral profile was identified 
in each instance, independent of the cell 
line utilized, and involved emission at 450 
nm. Figure 2 shows a characteristic profile 
of the 450 nm excitation scan. In this 
example, A431 cells were growth inhibited 
by medium supplementation with epider- 
mal growth factor. Scans revealed a 
hypochromic shift of the primary maxi- 
mum in cells that were more rapidly pro- 
liferating. Furthermore, the primary 
excitation peak maximum:370-nm ratio 
was consistently greater in the more rapidly 
proliferating cells. Although one may 
assume that the fluorophore that con- 
tributes to these alterations is NADH (8), 

., 
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Figure 3. Representative normalized excitation scans 
(excitation 270-500 nm, emission 520 nm) of normal 
oral epithelia (NOE). Short-term cultures of NOE were 
grown in media supplemented with (dotted line) or 
without (solid line) 0.8-M NaCI. The high-salt contain- 
ing media induced cellular differentiation. Reprinted 
from Sacks et al. (30), with permission. 

further characterization of the biochemical 
basis of this fluorescence profile is in order. 

Next, short-term cultures of normal oral 
epithelia were established to modulate 
cellular differentiation (26). Differentiation 
in these experiments was induced by cul- 
turing oral epithelium in high salt concen- 
trations, and was noted through the 
acquisition of cornified envelopes and high 
molecular weight keratin, cytokeratin 13. 
Distinct from the proliferation model 
described above, alterations in the 520-nm 
excitation scan could be identified (Figure 
3). Compared to less-differentiated cells, 
cells grown in high salt solution demon- 
strated an increased secondary absorption 
maximum at 380 nm. Thus, two systems 
that measure cellular proliferation and dif- 
ferentiation, respectively, provide unique 
changes in fluorescence emission patterns, 
again pointing to the value of multi- 
wavelength analysis. These results also sup- 
port the use of NCF characterization as a 
means of screening for subclinical pheno- 
typic alterations in tissues at high risk for 
cancer development. 
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