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21] X. Wang and L. Chen, **Proving the uniform boundedness of some
commonly used control scheme for robot,” presented at IEEE Int.
Conf. Robotics Automat., Scottsdale, AZ, May 1980.

Computing Location and Orientation of Polyhedral
Surfaces Using a Laser-Based Vision System

Din-Chang Tseng and Zen Chen

Abstract— A Iaser-based vision system for computing the location and
orientation of 3-D polyhedral surfaces is proposed. In this system, an
expanded laser beam passes through a code plate marked with equally
spaced vertical and hori: | lines and impinges on a polyhedral object
1o creste a spatial-encoded image for anslysis. Then, based on the
vanishing points or the directly available line directions of the perceived
grid lines on the polyhedral surface, the polyhedral surface orientation
can be inferred. In the meantime, the given dimensions of the grid
pattern on the piate are used to estimate the depth information of the
polyhedrsl surfaces. More imporiantly, we shall solve the noise problem
that occurs in the real image by a léast squares estimation method and
an iterative refinement method based on a geometric constraint crite-
rion. Experiments sre conducted to provide practical insight into the
method. The experimental results indicate that the method is remarkably
accurate and stable.

1. INTRODUCTION

Computer vision endows machines with a visual capability with
applications in robot navigation, surface measurement, object mod-
eling, camera position determination, automatic target recognition,
etc. In the literature, a number of methods have been presented for
measuring the 3-D orientation, location, and structure of objects
using structured light. In [1] and [2], a vertical slit projector and a
TV camera were employed to construct a range finder based on a
triangulation technique to acquire range data for measuring polyhe-
dral surfaces. Hall ef al. [3] used a mask of a known form to
project easily detected features on the surface of the object. The
known form mask and the recorded image were then used as a
stereo image pair. Then by using a least squares method, the
three~dimensional coordinates of points on the object were calcu-
lated from the transformation matrices of the image pair. These two
methods require the point correspondences to compute the 3-D
coordinates of points. However, the correspondence information is
generally not easy to get. Wang et al. [4) used grid coding to infer
the surface orientation and the structure of visible object surfaces.
They used the direction of the projected stripes to infer local surface
orientation and did not require any correspondence relationship
either the grid lines or the grid junctions. To simplify the mathemat-
ical derivation, they assumed a parallel projection model. However,
based on this model, the absolute depth can not be determined. Hu
and Stockman [5] also presented a method for 3-D surface measure-
ment using a projected grid of light. Based on triangulation compu-
tation and some geometric and topological constraints on the grid
pattern, the 3-D surface points were computed. Again, the point
correspondence information was used in this method.
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In this study, a new system for determining the 3-D location and
orientation of polyhedral surfaces will be proposed. Compared to
previous approaches, this system can find not only the orientation
but also the depth parameter of polyhedral surfaces without using
the point correspondences as required in the triangulation technique.
Moreover, our method’s computation model is nontrigonometric
and rather simple. In this system a laser beam passes through a grid
plate marked with equally spaced vertical and horizontal lines and
impinges on a polyhedral object to create a spatial-encoded image
for analysis. Based on the vanishing points or the directly available
line directions of the perceived grid lines on the polyhedral surface,
the polyhedral surface orientations can be inferred. In the meantime,
the given dimensions of the grid pattern on the plate are used to
estimate the depth information of the polyhedral surfaces. In order
to deal with the noise in the real image, the extracted perceived grid
pattern is first rectified by a least squares estimation method. Then
an iterative method based on a geometric constraint criterion is
employed to refine the polyhedral surface estimation. Experimental
results indicate that the method is remarkably accurate and stable.

1. GEOMETRIC CONFIGURATIONS

A. Camera Geometry

Let the x,, Y., and 2. axes be the three principal axes of a
camera geometry, and let the origin be at the camera lens center.
Assume that the image plane is parallel to the x_y. planc and its
position is at z. = ¢. The g value is roughly equal to the focal
length for an object at a great distance. Assume that (x;, y;, 2;)isa
3-D point and (a;, b)) is its corresponding 2-D image point; then
they are related by @; = gx;/z; and b; = qy; /2.

B. Laser Projector Geometry

A laser projector consisting of a laser source and a grid plate is
used to generate two orthogonal sets of parallel sheets of light
planes. The coordinate system of the laser projector is defined as
follows. The two orthogonal grid lines on the plate are defined as
the x, and y, axes, and the normal vector to the grid plate is
defined as the z, axis. The dimensions of the grid pattern on the
plate are known. The relative orientations of the x,, y,, and 2,
axes with respect to the camera coordinate system can be deter-
mined based on the same method, to be given later, that is used to
determine the orientation of an unknown polyhedral surface. For
this so-called laser calibration process, a planar surface with a
known orientation (say, parallel to the grid plate) is used.

II. GRID CODING AND SEGMENTATION OF ARBITRARY
POLYHEDRAL SURFACES

A. Grid Coding of Polyhedral Surfaces

The perceived grid lines and grid points in the grid-coded polyhe-
dron image need to be extracted in order to infer the 3-D location
and orientation of the visible polyhedral surfaces. Since the per-
ceived grid lines are the darkest pixels in the image, these lines can
be extracted by a regular thresholding method. Also, a regular
four-connected thinning algorithm can be applied to the thresholded
grid lines to produce the lines. The following steps are used to
obtain the 2-D coordinates of perceived grid points and a list of grid
features to be used for polyhedral surface segmentation.

1) Grid Point Extraction: The thin grid lines obtained in the
image are scanned row by row. The nearby branching pixels are
detected at the place where two horizontal runs of grid pixels begin

1042-296X/91$01.00 ©1991 IEEE
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to merge as a single run and at the place where a single run starts to
split into two runs. The midpoint of the two branching pixels is
identified as a coarse grid point and will be assigned a label.

2) Grid Line Tracking: Along each of the four grid line direc-
tions at each coarse grid point, the pixels belonging to a grid line are
traced and linked based on the line slope.

3) Grid Point Refinement: Once all grid lines are traced, pixels
on the same grid lines undergo a least squares line fitting. The
intersection of fitted lines replace the coarse grid points as the final
grid points.

4) Grid Features: Three grid features are derived at each grid
point during the line tracking process. The feature list will be used
in the polyhedral surface segmentation described later. It consists of

i) the neighbor identification labels of the four neighboring
pixels at a grid point as represented by a vector (ny, ny, ny,
n,) (if no such neighboring point exists, the corresponding
fabel is set to zero),

ii) the distance vector (d,, dy, ds, dy) representing the dis-
tances between the current grid point and its four ncighboring
grid points (if no such neighboring grid points exists, the
corresponding distance label is set to zero), and

iii) the slope vector (s, S, S3. s4) associated with the four line
directions at the grid points.

B. Polyhedral Surface Segmentation by Clustering

Intuitively, we know that if the surface normal vectors to polyhe-
dral surfaces are different, then the shapes of the perceived grid
patterns on these polyhedral surfaces will be different. So the
neighboring grid points with the same feature list will be clustered
to signify a surface patch. Notice that two disconnected clusters of
perceived grid patterns with the same feature list will correspond to
two separate surfaces of identical surface orientation. Thus, the
shape features and connectedness of grid lines serve as the bases for
surface segmentation. That is, the three grid features mentioned
above will be used.

Next, the clustering technique will be described. To generate a
cluster, an arbitrary interior grid point (i.e., not at the border) is
selected 10 be the seed of the cluster. Then the neighboring grid
points are examined. If a neighboring point has a great similarity
measure with reference to the current grid point, this point is then
assigned to the same cluster. In this way, all connected interior grid
points are grouped into the same cluster. If there are remaining
interior grid points, then an arbitrary point is selected as the seed of
a new cluster and the same process is repeated to construct another
cluster. The overall image processing flow from image thresholding
to surface segmentation of a polyhedron scene is given in Fig. 1.

IV. THREE-DIMENSIONAL LOCATION AND ORIENTATION
DETERMINATION OF ARBITRARY POLYHEDRAL SURFACES

A. Rectification of Grid Pattern

The image formation of the perceived grid pattern can be viewed
as the consequence of a sequence of geometric projection transfor-
mations applicd to the grid pattern on the grid plate. Namely, it
involves a parallel projection transformation from the grid pattern
on the plate to the grid pattern on the polyhedral surface, a
perspective transformation from the grid pattern on the polyhedral
surface to the projected grid pattern on the image plane, and
possible rotation and translation of the projected grid pattern to the
actual perceived image. Such a sequence of transformations can be
represented by a resultant transformation matrix in the homoge-

843

(a)
(b)
©)
§
(d)
§
(e) . ‘.

Fig. 1. The overall image processing flow of a grid-coded polyhedron
scene. (a) A grid-coded image. (b) The bi-level thresholded image. (c) The

thinned image. (d) The extracted grid points. (¢) The clustered grid points.

neous coordinate system, i.e.,
[ perceived grid pattern]
= [grid plate pattern] [transformation matrix] .

In general, a 4 x 3 transformation matrix is used to describe the
relation between a set of noncoplanar points in 3-D space and its
corresponding image points [6]. However, grid points on the grid
plate are coplanar, and the z coordinates of all these grid points will
be set to zero, so a 3 X 3 submatrix of the 4 x 3 transformation
matrix is used for analysis. This is given as

A\l Alz A|3
[Wxpio Wrpis W] = [ Xois Yoi 1] A2 An An (1)
A3| A32 A33
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where (x,;, ¥p;} is the 2-D coordinates of 2 perceived grid point,
(X, Yoi) is the 2-D coordinates of a grid point on the grid plate,
[A;;) is the 3 x 3 transformation matrix, and w is a real constant.

For i = 1, 2,**, n, the combination of equations can be rewritten
in a matrix form as
Xgg Y 1 O 0 0 =XxqX,  ~YoXp ]
0 0 0 xo Yo 1 =Xq¥p —Yo1¥Ypi
Xon JYon 1 o 0 0 ~XonXpn “YonXpn
0 0 0 Xon  Yon 1 ~XonVpn ~YonYpn ]
By, -xpl
B, Yo
Bl3 xpn
By | Yon
or
gB=P @

where B, = A;;/ Ay, 1 si=<3,1sj=3,
Then the least squares estimation of B using a pseudoinverse
matrix can be obtained as

-1
B=(0'Q) Q'P. (3
Thus
B, B, B
[wx;,,, wyp W) = [ X0, ¥oir 1]| By Bn By “)
By, By, By

where B, is set to 1. Here, (x,;, ¥,,) is the new rectified value of
(Xpi» ¥pr) based on the above least squares estimation.

In the above computation, the relative coordinate values of points
(X5 Yop) of a grid line on the grid plate corresponding to the
points (X ,;, ¥p,) of a perceived grid line are specified according to
the relative positions on the grid plate. Here, exact point correspon-
dences are not required. Any translation or any rotation of a
multiple of 180° should be included in transformation matrix A.
One only needs to check if the set of perceived grid lines is
correspondent to the right set of grid lines on the grid plate. This
can be done through the determination of the polyhedral grid line
direction based on the set of perceived grid lines, which will be
introduced next.

B. Deriving the Initial Surface Equations

1) Deriving the Polyhedral Grid Line Direction: Tt is well
known that the perspective projection of parallel lines that are not
parallel to the image plane will converge at a vanishing point [7],
[8]. Therefore, the lines projected from the parallel grid lincs onto
the polyhedral surface will intersect at a vanishing point assuming
the surface is not parallel to the image plane. Due to camera and
image-processing errors, the lines projected from the parailel grid
lines may not intersect at a point, However, the perceived grid lines
rectified by a least squares estimation technique wiH converge to the
vanishing point.

Assume the parametric equation of a grid line on a polyhedral
surface is given by

Ax(t) =xo+ at
y(£) = yo + bt

2(t) =zo + ct (5)

—®SI<®

which passes through point (X, Yo, 2o) and has a direction
specified by the vector [a, b, c]. Let (x(9), (1), z())bea point
on this polyhedral grid line and (u(¢), ¥(#)) be the cotresponding
image point on the image plane; then
ax(t)  q(x, + at)
w(y= 212200
(1) (zp+ct)
ar(t) a(yo+br)
e P (®)
z(1) (2o +ct)
where g is the distance from the camera lens center to the image

plane. The vanishing point (4o, vo) is obtained as (u(1), v( t)) when
t - oo, That is

v(t) =

a
U = ,‘l“:. u(‘)=%_

. gqb
v = ll‘n.n; v(t) = - (7)

It implies that the line directions {a, b, c] and {ug, vy, q] are
equivalent. In case the grid line on the polyhedral surface is paraliel
to the image plane (i.c., c = 0), the grid line direction can be
directly determined as the direction of the perceived grid line on the
image plane without the need to find the vanishing point.

2) Deriving the Normal Vector of a Polyhedral Surface:
Assume two vanishing points (u,, v,) and (4, v,) are found for a
polyhedral surface. Then the surface normal vector of the planar
surface is defined by the cross product of the two line direction
vectors [uy, v, q) X [43, vas g}. Let this unit normal vector be
denoted by N = [ A, B, CJ; then the plane equation is given by

Ax+By+Cz=D (8)

where D is the depth parameter that specifies the distance from the
origin to the given plane. One can use the procedure presented here
to compute the orientations of the two sets of laser planes (i.e., the
laser calibration) by placing a planar object surface with a known
orientation to the laser light; an object surface parallel to the grid
plate is used for this purpose.

3) Deriving the Depth Parameter D of a Polyhedral Surface:
Assume the directions of the x, and y, axes of the laser coordinate
system relative to the camera coordinate system are given by L,
and L, respectively. _

In Fig. 2, let the grid line g, g, be the intersection between the
polyhedral surface Ax + By + Cz = D and one of the y,z, laser
plane, i.e., one with the normal vector Z,. Assume g,g, is
bounded by two X, z, laser planes with a space of k grids, and each
grid on the grid plate is length /. Then the angle 0 between line g, 2,
and the normal vector L, of the x,z, laser plane can be computed
as

8=cos ' [(NxL,)-L,/INxLJL,I]. (9)
Let D, be the length of g, g,; then
D, =kl |cosb}.

Assume (X,, ¥;, 2,) and (X,, ¥, Z,) are two coordinates of the
grid points g, and g,, and (a;, b)) and (a,, b,) are their two
corresponding 2-D coordinates on the image plane. It then can be
shown that

D

2 2 2
a a b b 1 1

-:D, \/(7_2___1_) +(_2____'_) +(___)
qp; qp, qp; ap, b, b,
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Fig. 2. The configuration of the laser planes of light impinging on the
polyhedral surface. In this view, the direction of L, is perpendicular to the
page.

where p; = (a,4/q) + (b;B/q) + C, i = 1, 2. Since 2, and I,
are positive, the sign of D depends on p;, i =l or 2. Thatis, D
and p(i = 1 or 2) have the same sign.

V. ITERATIVE REFINEMENT BASED ON A GEOMETRIC
CONSTRAINT CRITERION

A. Principle

The above surface determination is based on the perceived grid
points rectified by the least squares estimation; thus, the noise in the
original image points is reduced. However, the residual error may
still cause some errors in the transformation matrix estimation. The
obtained matrix may not fully fulfill the geometric projection con-
straints. Therefore, we use the geometric constraints to iteratively
modify the solution obtained above.

In the iterative modification, the 3-D grid points g, and g,
mentioned previously are selected to be two points on a polyhedral
grid line coplanar with the y, axis. Similarly, the grid points on a
polyhedral grid line coplanar with the x, axis are also selected.
From these four points, the grid pattern on the polyhedral surface
can be constructed by interpolation as well as extrapolation. Then
the constructed grid pattern is reprojected via the precise perspective
transformation matrix onto the image plane to compare the projected
grid points with the original perceived grid points to compute a sum
of distance errors to evaluate the accuracy of the polyhedral surface
estimation. :

Assume (X, Ypj)s j=1,2,-++,n, are n original grid points
on the perceived grid pattern, and (X,;, Yo,), J = 1, 2,~+-, nare
the n corresponding grid points obtained from the reprojection of
the 3-D grid points on the estimated polyhedral surface. Let

§= Jil \/Gpj - "‘oj)2 + (yp/' - yoj)2 (”)

be the sum of distance errors between these two sets of grid points.
Each estimation of the polyhedral surface will be associated with
such an error, The optimal polyhedral surface is defined as the onc
associated with a minimal error.

B. Iterative Modification of Plane Equation Based on the
Geometric Constraint Satisfaction

The normal vector of the estimated polyhedral surface can be
reduced to a vector containing only two variables. That is, without
loss of generality, let | A} = maximum (] A|, | B|, {C|); then
(A, B, C] = | A| - [sign (4)* 1,.B', C']. Thus, [A, B, C)is
reduced to [sign (A) < 1, B, C’], which contains two variables B’
and C".

845

Fig. 3. Three polyhcdra used in the cxperiments.

Now we can modify the normal vector by changing the values of
B’ and C’ in a 2-D space based on the sum of distance errors defined
in (11). The initial solution of the normal vector is the one obtained
based on the grid points rectified by the least squares estimation.
Assume the starting location of the 2-D point (B, C’) is associated
with an error SS,. We modify (B’, C') by adding to or subtracting
from B’ or C’ a value Ad (i.c., change (B’, C") to (B’ + Ad, C"),
(B’ - Ad, C), (B, C' + Ad) and (B, C" - Ad)) where Ad is
the step size of the modification. Find the errors for these new
locations, called SS,, SS;, SS;, and SS,. In the set of {8S,i=0,
1, 2, 3, 4}, if SS; is the smallest, then reduce Ad to Ad/2;
otherwise, move (B’, C’) to the location with the smallest error SS;,
and set SS, to this smallest error; repeat the modification process
until the error is smaller than a threshold or no significant improve-
ment is made. To ensure a global minimum solution, a coarse
search is applied first to a larger region around the initial position of
(B, C).

VI. EXPERIMENTS AND DISCUSSIONS

In the experiments a CCD camera with a fixed focal length lens of
25 mm was used and the pictures taken were all in a 256 X 240
array with 256 intensity levels. The polyhedra used are shown in
Fig. 3.

Authorized licensed use limited to: IEEE Xpiore. Downloaded on March 16, 2009 at 19:08 from {EEE Xplore. Restrictions apply.
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TABLE 1
THE SUMMARIZED ESTIMATION ERRORS OF 3-D POLYHEDRAL SURFACE
DETERMINATION IN 26 EXPERIMENTS

Distance error Orientation error
Qercentage) (degree)
mean  minimum  maximum ~ mean  minimum  maximum
12% 0% 2.9% 0.67° 0.06° 1.7°
TABLE 11
SOME RESULTS OF THE POLYHEDRAL SURFACE ESTIMATION
Polyhedron ID
Item g1l gl4 g17 21902
Surface Rotation measured 0° 3* 60 80°
angle computed 1.7 30.3° 589° 80.1°
Distance from a point measured 590 590 588 566

on polyhedral surface computed 600 587 5717 555
to camera lens center’

Coefficients of polyhedral ~ computed  -0.702 -0.276 0.218 0.582

plane equation 0.086 0.101 0.093 0.017
(A,B,C, D) 0.707 0.956. 0.972 0.813
424 557 558 450
Angle between two measured 90° Bl.5® S53° 22.5°
intersecting grid lines computed  91.4° 81.6° $32° 20.7°
on polyhedral surface
Lengths of two measured 10 11 16 40
intersecting grid lines 10 11 16 40

on polyhedral surface’  computed 10 10.77 1539 399
10.18 1079 15.2 39

Sum of Distance errors/ computed  84/(72) 21/(48) 31/(26) 3.3/()
(number of grid points)”

' All distances and lengths are in millimeters.
2 The sum of distance errors is in pixels.

TABLE III
SoME RESULTS FOR DIFFERENT ORIENTATION CONFIGURATIONS
oF Laser, CAMERA, AND POLYHEDRAL SURFACE

Polyhedron ID
Item 857 gS1 253 855

Measured camera 10.4* 28.9° 51.7° 68.8°
rotation angle'

Distance from a point measured 679 624 604 538
on polyhedral surface computed 683 624 603 537
to camera lens center

Coefficients of polyhedral -0.208 —0.504 -0.795 -0.937
plane equation 0.023 0.020 0.038 0.032
(A,B,C,D) 0.978 0.864 0.606 0.347

665.9 546.7 381.6 184.2

Angle between two 89.6° 90.4° 90.6° 92.7*
intersecting grid lines
on polyhedral surface

Lengths of two inter- 10.01 10.00 10.00 10.02

secting grid lines on 10.01 9.84 10.08 10.26
polyhedral surface

Sum of distance 17.7/(68) 50.9/(63) 22/(65) 63/(39)

errors /(number of
grid points)

! The camera rotation angle means the angle between two consecutive sctups of the camera when the camera is moving around
the polyhedon.
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TABLE

ECEMBER 1991 847

v

EFFECTS OF SELECTING DIFFERENT SET OF GRID POINTS ON THE Accuracy
OF POLYHEDRAL SURFACE DETERMINATION

Polyhedron ID
Item 257 251 £53 855

Measured camera 10.2° 30.5° 50.9° 69.4°
rotation angle'

Distance from a point measured 679 624 604 538
on polyhedral surface computed 680 616 601 534
to camera lens center

Coefficients of polyhedral -0.203 -0.530 -0.789 -0.943
plane equation 0.031 0.0i6 0.039 0.030
(A.B.C, D) 0.979 0.848 0.613 0.333

665.0 534.3 387.6 112.0

Angle between two 89.9° 89.3° 90.8° 89.1°
intersecting grid lines
on polyhedral surface

Lengths of two inter- 10.00 10.00 10.00 10.03
secting grid lines on 10.00 9.8 10.00 10.35
polyhedral surface

Sum of distance 7.4/(35) 12.5/(20) 5.5/(22) 11.8/(15)
errors /(number of grid
points)

' The camera rotation angle means the angle between two consecutive setups of the camera when the camera is moving around

the polyhedon.

A. Accuracy of the Polyhedral Surface Estimation

Twenty-six experiments were conducted to demonstrate the accu-
racy of the polyhedral surface estimation. The results are summa-
tized in Table I; part of the detailed results are given in Tables 11
and II. For a more detailed report, refer to [9]. In Table I, the
distance is defined from a preselected grid point on the polyhedral
surface to the camera lens center, and the surface orientation means
either the relative angle of the polyhedral surface with respect to a
reference direction or the angle between two adjacent polyhedral
surfaces, depending on which is appropriate. Twenty-six experi-
ments were analyzed for distance accuracy, and 19 experiments
were analyzed for orientation accuracy. The estimation errors are
generally small; the errors range from 010 2.9% with a mean 1.2%
for the distance estimation and range from 0.06° to 1.7° with a
mean 0.67% for the orientation estimation.

B. Influence of Different Orientation Configurations of Laser,
Camera, and Polyhedral Surface

Here, the influence of different orientation configurations of laser,
camera, and polyhedral surface over the accuracy of surface deter-
(mination is examined. The results are shown in Tables II and III.
The image data used in Table Il were taken by rotating the polyhe-
dral surface around the laser optical axis from 0° to 80° with the
laser and camera being fixed. The image data used in Table 111 were
taken by moving the camera around the polyhedral surface from 11°
to 70° with the laser and the polyhedral surface fixed and the grid
light perpendicular to the polyhedral surface.

From the estimation errors listed in these two tables, we can sec
that the different orientations of laser, camera, and polyhedral
surface do not cause any serious problem. The estimation errors for
the cases with a larger camera-to-polyhedron angle in Table II (such
as case g1902) are due to the fact that the projected grid lines
become larger in size and thicker in width. In these cases, the
coordinates of the grid points become slightly inaccurate. However,
under such situations a small grid plate can be used instead to
prevent the grid lines from becoming sparse and thick.

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 16, 2009 at 19:|

C. Effect of Selecting Different Sets of Grid Points

On the other hand, we repeated the experiments reported in Table
I by selecting different numbers of grid points. The grid points
near the boundary of the projected grid pattern were selected on
purpose. The results are shown in Table IV. The experiments
indicate that rather consistent results are obtained regardless of the
set of grid points selected.

VII. CONCLUSION

A structured light vision system for computing 3-D location and
orientation of arbitrary polyhedral surfaces is proposed. In this
system a laser projector was constructed to encode the scene con-
taining a polyhedral object to create a grid-coded image for analysis.
A clustering technique was developed to segment grid-coded poly-
hedral surfaces. In order to deal with the errors caused by the laser
projector, camera lens distortion, and image processing, the per-
ceived grid pattern was first rectified by a least squares model.
Based on the vanishing points of one planar surface of the polyhe-
dron and the physical dimensions of the grid plate, the plane
equation then was estimated. At last, ihe iterative method based on a
geometric constraint criterion was employed to tefine the plane
equation. The experiments indicate that the results are quite accurate
and stable for various orientation configurations of laser, camera,
and polyhedral surface. We are currently applying the same equip-
ment to measuring a cylindrical object surface. A 3-D object
recognition system based on the proposed vision system is also
under investigation.
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