
PICT File
1Format Notes

APPLE
PROGRAM MERS
AND DEVELOPER’S
ASSOCIATION

ill

APDA# KMBPFN

K

4

Macintosh File Format
& Picture Structure

for

Graphic Applications

July 15, 1987

Apple TeChnical Publicaiions

Copyright @ 1987 Apple Computer, Inc. All rights reserved

Contents

Page Ik1

2 About These Notes
3 Supplemental Reference Documents
3 Terminology
4 A Standard Format The Advantage to You As a Developer5 Use of QuickDraw Picture Format for Image Data5 Key Differences Between Version 1 & 2 Pictures5 Picture Parsing
6 How QuickDraw Defines a Picture7 Picture Spooling
7 Spooling a Picture from Disk
8 SpoolingaPicturetoaFile
9 Drawing to an Offscreen Pixel Map to Get Interactive Peiformance9 A New Set of gra±Procs Routines
10 An Eye Toward Compatibility
10 Picture Format
12 picComments
12 Sample PICT File
13 PICT Opcodes
19 The New Opcodes - Expanded Format

Figures & Tables

Page :n
4 Figure 1. PICT File Format
14 Table 1. Data Types
15 Table 2. PICI’ Opcodes
19 Table 3. Data Format of Version 2 PICI Opcodes21 Table 4. Data Types Found within New PICT Opcodes Listed in Table 3

About these notes
This document, in addition to Inside Macintosh and Macintosh Technical Notes #21,27 and 120,provides the information developers need to know in order to create or modify graphics applicationprograms for the Macintosh. It describes the graphic data file structure, how it is parsed, the formatused to define pictures in QuickDraw and Color QuickDraw, and the differences between the newopcodes and those currently in use. It is written with particular consideration for the needs ofscanner application developers and manufacturers, but applies in general to all developers ofapplications that generate or receive image data and do not directly deal with structured graphics..
Apple’s miin objective in releasing this information is to create a development environment thatwill ensure compatibility with existing products and spawn new graphics-oriented tools. Thesepreliminary notes do not constitute a manual and should not be considered complete in their presentform. While every attempt has been made to verify the accuracy of the information presented, it issubject to change without notice.

Page 2
Supporting QuickDraw Pictures

Supplemental reference documents
The Apple publications lisied below are suggested reading to help understand QuickDraw pictures:

• Insük Maci,uosiz, Volumes I & IV contain detailed information about QuickDraw

• Inside Macintosh, Volume V (currently in preliminary release); contains detailed
inforxnanon about Color QuickDraw

• Macintosh Technical Notes #21 describes the internal format of the version 1 QuickDraw
picture data structure

• Macintosh Technical Notes #27 describes the PICI file format

• Macintosh Technical Notes #120 describes drawing to an offscreen buffer

• Macintosh Technical Notes #154 describes how to display large PlC!’ files

Terminology

The following terms are used throughout this document

QuickDraw picture: A variable-sized QuickDraw data structure, consisting of picture
opcodes and data, that is used to store graphics primitives for later
playback. A version 2 picture can contain color information.

PIC file type: A data-fork file that contains a 512 byte header, followed by a
QuickDraw picture.

PlC!’ resource type: This is a resource which contains a QuickDraw picture (version 1 or 2).

opcode: A pre-defined number within the QuickDraw picture that the
QuickDraw function DrawPicture uses to determine what object to
draw or what mode to change for subsequent drawing.

graphic primitive: A data structure that specifies the geometry of basic graphical
shapes, such as lines, arcs, ellipses, and rectangles.

Supporting QuickDraw Pictures Page 3

A standard format: the advantage to you as a developer
One of the outstanding features of the Macintosh computer has been the ease with which the useraccesses graphic data created by different applications. Apple supports the P1 data file as thevehicle for importing and managing scanned bitMaps and pixMaps into Apple/third partyapplications. Developers interested in creating or modifying their applications to be compatiblewith Apples’s graphic products should specify bit map or pixel map data using the QuickDrawpicture structure described in this document. The graphic information can then be saved as a P1data file. Because Apple supports this file format and picture structure, any application thatrecognizes the ia file format should be able to read, display, and modify graphic data created byother Macintosh applications.

The ia file (defined in Macintosh Technical Note #27) is a data fork file with a 512-byteheader, followed by a picture (see Figure 1). This data fork file contains a QuickDraw (and now,Color QuickDraw) data structure within which a graphic application (using standard QuickDrawcalls) places drawing primitives to represent an object or image graphic data. In the QuickDrawpicture format, pictures consist of opcodes followed by picture data.

PICT lie
(typeP) CT)

Data fork Resource fork
51 2-byte
header

picSize

picframe

cpcxde This fork is
picture data empty in

• PICT files.
.

picture data

EndOfPicture

Figure 1.. PICI’ file format.

With the introduction of Macintosh II, the QuickDraw picture structure has been extended toinclude new color graphics opcodes, as well as enable future expandibility. The new opcodessolve many of the major problems encountered by developers in using PICT tiles. For example, itis now possible to specify the resolution of bitmap data. Color can also be specified, but onlychunky pixels (contiguously stored pixel components) are currently recognized by ColorQuickDraw. Your application only needs to generate or recognize the chunky pixel format. Thisformat is indicated by an image or pixMap with a cmpCount = 1.

Most existing applications work fine, without modification, with version 2 pictures. On aMacintosh II, version 2 pictures will draw in color (if drawn directly to the screen). Currently,they will print using the old QuickDraw colors. Eventually, new print drivers will be able to takeadvantage of the new color information.

Page 4 Supporting QuickDraw Pictures

On a Macintosh 512 enhanced, Macintosh Plus, and Macintosh SE, a patch in the System file. beginning with version 4.1 provides QuickDraw with the capability to convert and display version2 pictures. The original Macintosh and Macintosh 512 cannot display version 2 pictures..
Applications that generate pictures in the QuickDraw picture format are free to use any or allavailable features to support their particular needs. Some. will use only the pixMap primitive. Youmay wish to include comments in the picture that are pertinent to the needs of your application.. Ingeneral, put a rnmimal amount of information in your PIC files and avoid redundancy. It isreasonable for receiving applications to ignore picture opcodes that are not needed.

For those developers interested in generating picture data on non-Apple CPUs, the QuickDrawinternal opcodes are included at the back of this document. For example, the university communitymay wish to generate my-traced images on mainframes and display them in the Macintoshenvironment through use of the PICT file format and QuickDraw picture structure.

Use of QuickDraw Picture Format for Image Data
For developers, there are advantages to using the QuickDraw picture format to display images intheir graphics applications:

Because the PICT structure is supported by Apple at the system level, it will always beconsidered in upgrade paths to new architectures.

Establishing a standard format for image data has enormous advantages for softwaredevelopers interested in graphic data interchange between applications. If, for example, allscanner peripherals support PICT as the graphic data file format, the task of importing datawould then be reduced to parsing a single file format.

Key differences between version 1 & 2. pictures
The major differences between version 1 and 2 pictures are listed below.

• version 1 opcodes are a single byte, version 2 opcodes are 2 bytes in length. This meansthat old opcodes in a version 2 picture take up two bytes, not one.

• version 1 data may start on byte boundaries; version 2 data is always word-aligned.

• in version 2, the high bit of the rowBytes field is used to indicate pixMap instead ofbitMap; pixData then replaces bitData.

• all unused version 2 opcodes, as well as the number of data bytes associated with each,have been defined. This was done so that picture parsing code can safely ignore unknownopcodes, enabling future use of these opcodes in a backward-compatible manner.

Picture parsing

The first 512 bytes of a PICT data file contain application-specific header information. EachQuickDraw (and Color QuickDraw) picture definition consists of a fixed-size header containinginformation about the size, scaling, and version of the picture, followed by the opcodes and picturedata defining the objects drawn between the OpenPicture and ClosePicture calls.

Supporting QuickDraw PiCtureS PageS

When the OpenPicture routine is called and the port is an old grafPort, a version 1 picture is
opened. When the OpenPicture routine is called and the port is a CGrafPort, then a version 2
picture is opened. If any fields in the grafPort are different than the default entries, those fields that
are different get recorded in the picture.

Version 4.1 of the Macintosh System ifie incorporates a patch to QuickDraw that will enable
QuickDraw (on machines with 128K or larger ROMs) to parse a version 2 tcr file, read it
completely, attempt to convert all Color QuickDraw color opcodes to a suitable black-and-white
representation, and draw the picture in an old grafPort If you are trying to display a version 2
picture on a Macintosh without the system patch, QuickDraw won’t be able to read (or display) the
picture data but it shouldn’t crash your machine.

On the Macintosh U, old pictures can also be played back in new grafPorts. You should only use
old drawing comm’nds in old pictures. In new pictures, old and new drawing commands can be
intermixed.

How QuickDraw defines a picture

The Pascal record structure of version 1 and 2 pictures is exactly the same. In both, the picture
begins with a picSize, then a picFrarne (rect), followed by the picture definition data. Since a
picture may include any sequence of drawing commands, its data structure is a variable-length
entity. It consists of two fixed-length fields followed by a variable-length fiel±

Record smicnire of OuickDraw & Color OuickDraw pictures

TYPE Picture — RECORD
picSize: INTEGER; (low order 16 bits of picture size;

this is not useful infomation}
picFrame: Rect; (picture frame, used as reference for

scaling when the picture is dzawn
(picture definition data I

END;

To maintain compatibility with the original picture format, the picSize field has not been changed inversion 2 pictures. However, the information in this field is only useful if your application
supports version 1 pictures not exceeding 32K bytes in size. Because pictures can be much larger
than the 32K limit imposed by the 2-byte picSize field, use the GetHandleSize call to determine
picture size if the picture is in memory or the file size returned in pBFGetlnfo if the picture resides
in a file.

The picFrame field is the picture frame that surrounds the picture and gives a frame of reference for
scaling when the picture is played back. The rest of the structure contains a compact representation
of the image defined by the opcodes. The picture definition data consists of a sequence of the
opcodes listed in Table 2, each followed by zero or more bytes of data. Every opcode has an
implicit or explicit size associated with it that indicates the number of data bytes following that
opcode, ranging from 2 to 232 bytes (this maximum number of bytes applies to version 2 pictures
only).

Page 6 Supporting QuickDraw Pictures

Picture spooling
In the past, images rarely exceeded the 32K practical limit placed on resources. Today, with theadvent of scanners and other image input products, images may easily exceed this size. Thisincrease in image size necessitates a means for handling pictures that are too large to reside entirelyinmemory. OnesoluuonistoplaccthepicturenthedataforkofaPlCrfllc, andspoolitinasneeded. To read the file, an application need simply replace the QuickDraw default getPicProcroutine with a procedure (getPlCTData) that reads the picture data from a disk file; the disk accesswould be transparent. Note that this technique applies equally to version 1 (byte-opcode) andversion 2 (word-opcode) pictures.

Spooling a picture from disk

Tn oxier to display pictures of arbitrary size, an application must be able to import a QuickDrawpicture from a.file of type PICr. Cfliis is the file type produced by a Save as... from MacDrawwith the PIC option selected.) Whax follows is a small program fragment that demonstrates howto spoolin apicturefrom thedataforkofaPlClfile. Thepicturecan belargerthan thehistorical32K resource size limitation.

Note: To better understand how to provide additional errorchecking during picusre spooling, refer to Macintosh TeciznicatNotes #154, “Displaying Large PICTFile$’.

the following variable and procedure muSt be at the main level of the program IVAR
globaiRef: INTEGER;

PROCEDURE GetPICTData (dataPtr: Ptr; byteCount: INTEGER); (replacement for
getPicProc routine

VAR
err : INTEGER;
longCount: LONGIN’r;

BEGIN
longCount : byteCount; (longCount is a Pascal VAR parameter and

must be a LONGINT
err : FSRead(globaiRef, longCount, dataPtr);

ignore errors here since it is unclear how to handi.e them IEND;

Supporting QuickDraw Pictures Page 7

PROCEDURE GetandDrawPlcTFile; (procedure to draw in a picture from a PICT file
selected by the user

VAR
wher: Point; (where to display dialog
reply: SFReply; I reply record
myFileTypes: SFTypeList; (more of the Standard. File goodies INunFileTypes: INTEGER;
err: OSErr;
myProcs: QDProcs; (use CQDProcs for a CGrafPort (a color window)
PICTRand: PicHandle; { we need. a picture handle for DrawPicture I
longCount: LONGINT;

myPB: Param2lockRec;

BEGIN
wher.Iz :— 20;
wkxer.v :— 20;

Page 8 Supporting QuickDraw Pictures

NumrileTypes : 1; (Display PICT files
myrileTypes (0] : P ICT’;
SrGetrile (wher, ‘‘ ,NIL, NumFileTypes,myFileTypes, NIL, reply);IF reply. good THEN BEGIN

err :— FSOpen (reply. fname, reply. vrefnum, giobaiRef);

SetStdProcs(myProcs); (use SetStdProcs for a CGrafPort Imywindow”.grafProcs : @znyProcs;
myPracs.getPicProc :— @GetPICTData;

PtCTHand :— Picflandle(NewHandle(SizeOf(picture))); (get onethe size of (size word + frame rectangle)

skip (so to speak) the MacDraw header block
err : SetFPos (globaiRef, fsFromstart, 512);
longcount : SizeOf (Picture);

read in the (obsolete) size word and the picture frameerr : FSRead(globalRef, longcount, Ptr (PICTHand”));

DrawPicture (PICTHand, ?ICTHand .picFrame);
inside of DrawPicture, QD makes repeated calls to getPicProcto get actual picture opcodes and data. Since we haveintercepted GetPicProc, QD will call myProcs to getgetPicProc, instead of calling the default procedure I

err :— FSClose(globalRef);

mywindowA.grafprocs : NIL;
Disposilandle (Handle (PtCTHand));

END; (IF repiy.good
END;

Spooling a picture to a file

Spooling a picture out to a file is equally stiightforward. By replacing the standanl putPicProcwith your own procedure, you can create a PlC!’ file and spool the picture data out to the ifie.

Supporting QuickDraw Pictures Page 9

Drawing to an offscreen pixel map to get interactive
performance
With the advent of high resolution output devices such as laser printers, the need has arisen tosupport bit-map images at resolutions higher than those supported by the screen. In order to speedup the interactive manipulation of high-resolution pixel-map images, developers may want to firstdraw them into an off-screen pixel map at screen resolution and retain this screen version as longas the document is open.

Note: You can use the formula shown under the section on
“Sample PICTfile” calculate the resolution of the source data.How to draw into an offscreen pixMap is described in MacintoshTechnical Note #120.

A new set of grafProcs routines
The entire opcode space has been defined or reserved, as shown in Table 2, and a new set ofroutines has been added to the grafProcs record. The purpose of these changes is to providesupport for anticipated future enhancements in a way that will not cause old applications to crash.How this works is that when Color QuickDraw encounters an unused opcode, it calls the newopcodeProc routine to parse the opcode data. By default, this routine simply ignores the data,since no new opcodes are defined (other than HeaderOp, which is also ignored).

Color QuickDraw has replaced the QDProcs record with a CQDProcs record. In a new gra±Port,you should never use the SetStdProcs routine. If you do, it will return the old QDProcs record,which will not contain an entry for the stdOpcodeProc. If you do not use the new SetS tdCProcsroutine to parse the unused opcodes, the first color picture that you try to display may crash yoursystem.

Extensions to the QDPROCS record

opcodeProc EQU $34 [pointer]
newProcl EQU $38 [pointer]
newProc2 EQU $3C [pointer]
newProc3 EQU $40 [pointer]
newProc4 EQU $44 [pointer]
newProc5 EQU $48 [pointer]
riewProcó EQU $4C [pointer]
CQDProcsRec EQU $50 size of QDPrOCS record

Page 10 Supporting QuickDraw Pictures

An Eye Toward Compatibility

Many applications already support PICT resouzves larger than 32K. The 128K ROMs (and later)allow pictures as large as memory (or spooling) will accommodate. This was made possible byhaving QuickDraw ignore the size word and simply read the picture until the end-of-picture opcodeis reached.

For maximum safety and convenience, let QuickDraw generate and interpret yourpictures.

While Apple has provided you with the data formats that allow you to read or write picture datadirectly, we recommend that you always let DrawPicture or OpenPicture and ClosePicture processthe opcodes.

One reason to read a picture directly by scanning the opcodes would be to disassemble it to, forexample, extract a Color QuickDraw pixel map to save off in a private data structure. Thisshouldn’t normally be necessary, unless you are working with an application running on a CPUother than the Macintosh. You wouldn’t need to do it, of course, if you were using ColorQuickDraw.

If you do look at the picture data, be sure and check the version information. You may want toinclude an alert (dialog box) in your application that indicates to the user when a picture wascreated using a later version of the picture format than cuntntly recognized by your application,letting them know that some elements of the picture cannot be displayed. If the version informationindicates a QuickDraw picture version later than the one recognized by your application, yourpmgram should skip over the new opcodes and only attempt to parse the opcodes it knows.
As with reading picture data directly, it is best to use QuickDraw to create data in the PICT format.If you do have a need to create PICI’ format data directly, it is essential that you understand andfollow the format presented in Table 2 and thoroughly test the data produced on both color andblack and white Macintosh machines.

Apple does not guarantee that a picture which wasn’t produced by QuickDraw willwork.

Picture Format
This section describes the internal structure of the QuickDraw picture, consisting of a fixed-lengthheader (which is different for version 1 and version 2 pictures), followed by variable-sized picturedata. Your picture structure must follow the order shown in the examples below.

The two fixed-length fields, picSize and picFrame, are the same for version 1 and version 2pictures.

picSize: INTEGER; (low—order 16 bits of picture size)picFrame: RECT; (picture frame, used as scaling reference)

Following these fields is a variable amount of opcode-driven data. Opcodes represent drawingcommands and parameters that affect those drawing commands in the picture. The first opcode inany picture must be the version opcode, followed by the version number of the picture.

Supporting QuickDraw Pictures Page 11

Picture Definition: Version 1

Picture Header -fixed size of 2 bytes:

$11 BYTE (version opcode)
$01. BYTE (version number of picture)

Picture Definition Data - variable sized:

opcode (one drawing command)
data
opcode BYTE (one drawing command)
data

$FF (end—of-picture opcode)

In a version 1 picture, the version opcode is $11, which is followed by version number $01.When parsing a version 1 picture, Color QuickDraw (or a patched QuickDraw) assumes it isreading an old picture, fetching a byte at a time as opcodes. An end-of-picture byte ($FF) after thelast opcode or data byte in the file signals the end of the data sneam.

Picture Definition: Version 2

Picture Header - fixed size of 30 bytes:

$0011 WORD (version opcode}
$O2FF WORD (version number of new picture)

$OCOO WORD (reserved header opcode}
24 bytes of data (reserved for future Apple use)

Picture Definition Data - variable sized:

opcode WORD (one drawing command)
data
opcode WORD (one drawing command)
data

$OOFF WORD (end-of-picture opcode)

In a version 2 picture, the first opcode is a two-byte version opcode ($001 1). This is followed by atwo-byte version number ($O2FF). On machines without the 4.1 System File, the first $00 byte isinterpreted as a no-op and is skipped, then the $11 is interpreted as a version opcode. On aMacintosh II (or a Macintosh with System File 4.1 or later), this identifies the picture as a version2 picture, and all subsequent opcodes are read as words (which are word-aligned within thepicture). On a Macintosh without the 4.1 System patch, the $02 is read as the version number, thenthe $FF is read and interpreted as the end-of-picture opcode. For this reason, DrawPictureterminates without drawing anything.

For future expandibility, the second opcode in every version 2 picture must be a reserved headeropcode, followed by 24 bytes of data that are not used by your application.

Page 12 Supporting QuickDraw Pictures

picComments

If your application requires capability beyond that provided by the picture opcodes, thepicCoinment opcode allows data or comntnnds to be passed directly to the output device.picComments enable MacDraw, for example, to reconstruct graphics primitives not found inQuickDraw (eg., rotated text) that are received either from the clipboard or from anotherapplication. picCornments are also used as a means of conmiunicanng more effectively with theLaserWriter and with other applications via the scrap or the PICT data file.

Because some operations (like splines and rotated text) can be implemented more efficiently by theLaserWriter, some of the picture comments are designed to be issued along with QuickDrawcommands that simulate the commented commands on the Macintosh screen. If the printer you areprinting to has not implemented the comment commands, it ignores them and simulates theoperations using the accompanying QuickDraw commands. Otherwise, it uses the comments toimplement the desired effect and ignores the appropriate QuickDraw-simulated cominnds.

Note: The picture comments used by MacDraw are listed and
described in Macintosh Technical Note #27.

If you are going to be producing or modifying your own picture, the structure and use of thesecomments must be precise. The comments and the embedded QuickDraw commands must come inthe conect sequence in order to work properly.

Note: Apple is currently investigating a method to register
picComments. Ifyou intend to use new picCommenrs in your
application, you must contact Apple’s Developer Technical Support
to avoid conflict with picComment numbers used by other
developers.

Sample PICT file

An example of a version 2 picture data file which can display a single image is shown on thefollowing page. Applications that generate picture data should set the resolution of the imagesource data in the hRes and vRes fields of the PlC!’ file. We recommend, however, that youcalculate the image resolution anyway using the values for srcRect and dstRect according to thefollowing formulas:

horizontal resolution (hRes) = width of srcRect x 72
width of dstRect

vertical resolution (vRes) height of srcRect x 72
height of dstRect

Supporting QuickDraw Pictures Page 13

PICT file example

Size Name Description
(in bytes)

2 picSize low word of picture size
8 picFrame rectangular bounding box of picture, at 72 dpi

Picture Definition Data:

2 version op version opcodc = $0011
2 version version number = $O2FF
2 Header op header opcode = $OCOO
4 size total size of picture in bytes (=- I for v.2 pictures)
16 fBBox fixed-point bounding box (=- 1 for v.2 pictures)4 reserved reserved for future Apple use (=-1 for v.2 pict.)

2 opbitsRect BitMap opcode = $0090
2 rowBytes integer, must have high bit set to signal pixMap
8 bounds rectangle, bounding rectangle at source resolution2 pmVersion integer, pixMap version number
2 packType integer, defines packing format
4 packsize Longint, length of pixel data
4 hRes fixed, horizontal resolution (dpi) of source data4 vRes fixed, vertical resolution (dpi) of source data
2 pixelType integer, defines pixel type
2 pixelSize integer, number of bits in pixel
2 cmpCount integer, number of components in pixel
2 cznpSize integer, number of bits per component
4 planeBytes Longint, offset to next plane

pmTable color table =0
pmRescrved reserved =0

4 ctseed Longint, color table seed
2 translndex integer, index of transparent pixels
2 ctSize integer, number of entries in CITable

(ctSize-+-1) * 8 CiTable color lookup table data
8 srcRect rectangle, source rectangle at source resolution
8 dstRect rectangle, destination rectangle at 72 dpi resolution
2 mode integer, transfer mode

see Table 4 pixData pixel data

2 endPlcr op end-of-picture opcode = $OOFF

PICT Opcodes

The opcode information in Table 2 (on pages 15-19) is provided for the purpose of debugging
application-generated PICT files. Your application should generate and read PICT flies only by
using standard QuickDraw or Color QuickDraw routines (OpenPicmre, ClosePicture).

Page 14 Supporting QuickDraw Pictures

The data types listed below are used in the in Table 2 opcode definitions. Data formats aredescribed in Inside Macuuosh,Volwne I.

Table 1. Data types

Type Size

vi opcode 1 byte
v2 opcode 2 bytes
integer 2 bytes
long integer 4 bytes
mode 2 bytes
point 4 bytes
0..255 1 byte
—128.. 127 1 byte (signed)
rect 8 bytes (top, left, bottom, nghc integer)
poly 10+ bytes
region 10+ bytes
fixed-point number 4 bytes
pattern 8 bytes
rowbytes 2 bytes (always an even quantity)

Valid, picture opcodes are listed in Table 2. New opcodes or those altered for version 2 picturefiles are indicated by a leading asterisk (*)• Refer to Inside Macintosh, volume V for specificdetails on the new Color QuickDraw routines. The unused opcodes found throughout the table axereserved for Apple use. The length of the data that follows these opcodes is pre-defined, so if theyaxe encountered in pictures, they can simply be skipped. By default, Color QuickDraw reads andthen ignores these opcodes.

Notes For Table 2:

1. The opcode value has been extended to a wordfor version 2 picmres. Remember, opcodesize = 1 bytefor version 1.

2. Because opcodes must be word aligned in version 2 pictures, a byte of0 (zero) data isadded after odd-size data

3. The size of reserved opcodes has been defined. They can occur only in version 2 pictures.

4. All wutsed opcodes are reservedforfuxure Apple use and should nor be used.

5. For opcodes $0040 - $0044: rounded-corner rectangles use the setting of the ovSize point(refer to opcode $000B)

6. For opcodes $0090 and $0091: data is unpacked. These opcodes can only be usedfor
rowbytes less than 8.

7. For opcodes $0100 - $7FFF: the amount ofdatafor opcode $nnXX 2 * nn bytes

Supporting QuickDraw Pictures Page 15

Table 2. PICT opcodes

Opcode Name Description Data Size
(in bytes)

flop
clip
background pattern
text font (word)
text face (byte)
text mode (word)
space extra (fixed point)
pen size (point)
pen mode (word)
pen pattern
fill pattern
oval size (point)
dh, dv (word)
text size (word)
foreground color (long)
background color (long)

0
region size
8
2
1
2
4
4
2
8
8

4
2
4
4

$0010
$0011
$0012
$00 13
$0014
$0015
$0016
$0017
$0018
$0019
$OO1A
$OO1B
$OO1C
$OO1D
$OO1E
$00 iF

$0020
$0021
$0022
$0023
$0024
$0025
$0026
$0027
$0028
$0029
$002A
$002B
$002C
$002D
$002E

TxRatio
Version

*pnpjat
*Fifl1Pat

*chExna
*rese.tied for Apple use
êreserved for Apple use
*reserved for Apple use
*RGBFgCoI
*RGB BkCol

*DefHjjjte
*OpCojor

Line
LineFrom
ShortLine
ShortLineFrorn
*resejed for Apple use
*.ved for Apple use
*reserved for Apple use
*resea.t,ed for Apple use
LongText
DHText
DVText
DHDVrext
*resei.ved for Apple use
*iet,,ed for Apple use
*reseiied for Apple use

nunier (point), denom (point)
version (byte)
color background pattern
color pen pattern
color fill pattern
fractional pen position
exa for each character

opcode
opcode
opcode
ROB foreColor
ROB backColor
hilite mode flag
RGB hilite color
Use default hilite color
RGB OpColor for arithmetic modes

8
1

variable: see Table 3
variable: see Table 3
variable: see Table 3

2
2
0
0
0

variable: see Table 3
variable: see Table 3

0
variable: see Table 3

0
variable: see Table 3

8
4
6
2
2+ data length
2÷ data length
2÷ data length
2÷ data length
5 + text
2 + text
2 + text
3 + text
2+ data length
2÷ data length
2+ data length

$0000
$0001
$0002
$0003
$0004
$0005
$0006
$0007
$0008
$0009
$000A
$000B
$000c
$000D
$000E
$000F

NOP
clip
BkPat
TxFont
TxFace
TxMode
SpExtra
PnSize
PnMode
PnPat
FiliPat
OvSize
Onn
TxSize
FgColor
BkColor

pnLoc (point), newPt (point)
newPt (point)
pnLoc (point, dh, dv (-128.. 127)
dh, dv (-128.. 127)
opcode +2 bytes data length + data.
opcode +2 bytes data length + data
opcode +2 bytes data length + data
opcode + 2 bytes data length + data
txLoc (point), count (0. .255), text.
dh (0. .255), count (0. .255), text
dv (0. .255), count (0. .255), text
dh, dv (0. .255), count (0. .255), text

opcode ÷2 bytes data length + data
opcode +2 bytes data length + data
opcode +2 bytes data length + data

Page 16 Supporting QuickDraw Pictures

Table 2. PICT opcodes (continued)

Opcode Name Description Data Size
(in bytes)

$002F *reserved for Apple use opcode +2 bytes data length + data 2÷ data length

$0030 frameRect rect 8$0031 paintRect rect 8$0032 eraseRect rect 8$0033 invertRect rect 8$0034 fiURect rect 8$0035 *resex.,ed for Apple use opcode + 8 bytes data 8$0036 ‘reserved for Apple use opcode + 8 bytes data 8$0037 *jj for Apple use opcode + 8 bytes data 8$0038 frameSazneRect rect 0$0039 paintSameRect rect 0$003A eraseSameRect rect 0$003B invertSameRect rect 0$003C flllSameRect rectangle 0$003D *reserved for Apple use opcode 0$003E *v for Apple use opcode 0$003F *resei.d for Apple use opcode 0

$0040 fxaxneRRect rect (see Note #5 on page 13) 8$0041 paintRRect rect (see Note #5 on page 13) 8$0042 eraseRRect rect (see Note #5 on page 13) 8$0043 invertRRect rect (see Note #5 on page 13) 8$0044 fluiRRect rect (see Note #5 on page 13) 8$0045 1’reserved for Apple use opcode +8 bytes data 8$0046 for Apple use opcode +8 bytes data 8$0047 •ved for Apple use opcode +8 bytes data
$0048 fraxneSaxneRRect rect 0$0049 paintSameRRect rect 0$004A eraseSameRRect rect 0$004B invertSarneRRect rect 0
$004C flhisameRRect rect 0
$004D *reserved for Apple use opcode 0$004E *reserved for Apple use opcode 0
$004F *reserved for Apple use opcode 0

$0050 frameOval rect 8
$0051 paintoval rect 8
$0052 eraseOval rect 8
$0053 invertOval rect 8
$0054 flilOval rect 8
$0055 for Apple use opcode + 8 bytes data 8
$0056 for Apple use opcode + 8 bytes data 8
$0057 for Apple use opcode + 8 bytes data 8
$0058 frameSameOvaL rect 0
$0059 paintSameOval rect 0
$005A eraseSameOval rect 0
$005B invertSameOval rect 0
$005C filiSameOval rect 0

Supporting QuickDraw Pictures Page 17

Table 2. PICr opcodes (continued)

Opcode Name Description Data Size
(in bytes)

$005D *reserved for Apple use opcode 0
$005E *reserved for Apple use opcode 0
$005F for Apple use opcode 0

$0060 frameArc rect, startAngle, arcAngle 12
$0061 paintArc rect, startAngle, arcAngle 12
$0062 eraseArc rect, startAngle, arcAngle 12
$0063 invertAro rect, startAngle, arcAngie 12
$0064 fihlAxc rect, startAngle, arcAngle 12
$0065 *reserved for Apple use opcode + 12 bytes 12
$0066 for Apple use opcode + 12 bytes 12
$0067 *res.IJerj for Apple use opcode + 12 bytes 12
$0068 frazneSameArc rect 4
$0069 paintSameArc rect 4
$006B invertSameArc rect 4
$006C fiulSameArc rect 4
$006D *reserved for Apple use opcode +4 bytes 4
$006E *reserved for Apple use opcode +4 bytes 4
$006F *ct.j for Apple use opcode +4 bytes 4

$0070 framePoly poly polygon. size
$0071 paintPoly poly polygon size
$0072 erasePoly poly polygon size
$0073 invertPoly poly polygon size$0074 filiPoly poly polygon size$0075 *r_I.d for Apple use opcode +poly
$0076 *Jed for Apple use opcode + poly
$0077 *reserved for Apple use opcode word + poly
$0078 frameSamePoly (not yet implemented - same as 70, etc.) 0
$0079 paintSaniePoly (not yet implemented) 0
$007A eraseSamePoly (not yet implemented) 0
$007B invertS amePoly (not yet implemented) 0
$007C flilSamePoly (not yet implemented) 0
$007D *reserved for Apple use opcodc 0
$007E *reseJed for Apple use opcode 0
$007F for Apple use opcode 0

$0080 &ameRgn rgn region size
$0081 paintRgn rgn region size
$0082 eraseRgn rgn region size
$0083 invertRgn rgn region size
$0084 fillRgn rgn region size
$0085 *reserved for Apple use opcode + rgn region size
$0086 *eJed for Apple use opcode + rgn region size
$0087 ‘reserved for Apple use opcode + rgn region size
$0088 fraineSameRgn (not yet implemented - same as 80, etc.) 0
$0089 paintSameRgn (not yet implemented) 0
$008A eraseS ameRgn (not yet implemented) 0

Page 18 Supporting QuickDraw Pictures

TabLe 2. PICT opcodes (conunued)

Opcode Name Description Data Size
(in bvtes

$008B
$008C
$008D
$008E
$008F

$0090
$0091
$0092
$0093
$0094
$0095
$0096
$0097
$0098
$0099
$009A
$009B
$009C
$009D
$009E
$009F

$OOAO
$COA1
00A2

$OOAF

$OOBO

$OOCF

invertSameRgn
flllSanieRgn
*reserved for Apple use
4’reserved for Apple use
*reserved for Apple use

*BjtsRt
*BitsRgn
*resei.i,ed for Apple use
*teserved for Apple use
*reved for Apple use
*re.L,ed for Apple use
‘reserved for Apple use
*reser,ed for Apple use

*pakBjtsRgn
*res1ed for Apple use
*reserved for Apple use
*erL,ed for Apple use
*reserved for Apple use
*reserved for Apple use
*jfor Apple use

ShortComment
LongComment
*resex,ed for Apple use

‘reserved for Apple use

*reserved for Apple use

*reserved for Apple use

(not yet implemented)
(not yet implemented)
opcode
opcode
opcode

copybits, rect clipped
copybits, rgn clipped
opcode +2 bytes data length + data
opcode +2 bytes data length + data
opcode +2 bytes data length + data
opcode +2 bytes data length + data
opcode +2 bytes data length + data
opcode word +2 bytes data length +
packed copy bits, rect clipped
packed copybits, rgn clipped
opcode +2 bytes data length + data
opcode +2 bytes data length + data
opcode +2 bytes data length + data
opcode +2 bytes data length + data
opcode +2 bytes data length + data
opcode +2 bytes data length + data

kind (word)
kind (word), size (word), data
opcode +2 bytes data length + data

opcode +2 bytes data length + data

opcode

opcode

0
0
0
0
0

variable: see Table 3
variable: see Table 3

2÷ data length
2÷ data length
2+ data length
2+ data length
2÷ data length

data 2÷ data length
variable: see Table 3
variable: see Table 3

2÷ data length
2+ data length
2+ data length
2÷ data length
2+ data length
2÷.data length

2
4+data
2+ data length

2+ data length

0

0

$0100 *reserved for Apple use

opcode +4 bytes data length + data

opcode +4 bytes data length + data
end of picture

opcode +2 bytes data

4-,- data length

4+ data length
2

2

$O1FF *reserved for Apple use opcode +2 bytes data 2.

$OODO *reserved for Apple use

$OOFE
$OOFF

*reserved for Apple use
opEndPic

Supporting QuickDraw Pictures Page 19

Description

opcode +4 bytes data

opcode +4 bytes data
opcode
opcode +4 bytes data

opcode + 254 bytes data

opcode + 254 bytes darn
opcode

opcode
opcode +4 bytes data length + data

opcode ÷ 4 bytes data length + data

BkPixPat
PnPixPat
FiliPixPat

if patType = ditherPat
then

PatType: word;
PatlData Pattern;
RGB: RGBCoIor

else
PatType: word;
PatlData Pattern;
pixMap:
colorTable

pixData
end;

Description

color background pattern
color pen pattern
color till pattern

Table 2.

Opcode

PICI’ opcodes (connnued)

Name Data Size
(mbytes)

$0200

$OBFF
$0c00
$OCO1:

S7F00

$7FFF
$8000

$8OFF
$8100

$FFFF

*reserved for Apple use

for Apple use
HeadeiOp

for Apple use

*reserved for Apple use

*reserved for Apple use
*reserved for Apple use

*reserved for Apple use
*reserved for Apple use

1’reserved for Apple use

4

22
24
24

254

254
0

0
4+ data length

4+ data length

The new opcodes - expanded format

The expanded format of the version 2 PIC opcodes are shown in Table 3 below.

Table 3. Data format of version 2 PICT opcodes

Opcode Name

$0012
$0013
$0014

(pattern type =2 }
(old pattern data }
(desiredRGBforpattern

(pattern type = 1)
{ old pattern data)
(pixMap format shown below }
(color table format shown below)

(pixData format shown below

Page 20 Supporting QuickDraw Pictures

Table 3. Data format of version 2 P1C opcodes (continued)

Opcode

$0015 PnLocHFrac fractional pen position

pnLocHFrac: word: (see Inside Macintosh for format I

IfpnLocHFrac 1,2, it is always put to the picture before each text drawing operation.

$0016 ChExtra extra for each character

chExtra: word: (see inside Macintosh for format }

After chExtra changes, it is put to picture before next text drawing operation.

$OO1A RGBFgCoI RGB foreColor
$OOIB RGBBkCoI RGB backCo(or
$OO1D HillteColor RGB hilite color
$OO1F OpColor RGB OpColor for arithmetic modes

RGB: RGBCoIor, (desired RGB for fgfbk
(see inside Macintosh, Volume V for data structure)

$OO1C HiliteMode hilite mode flag

No data. This opcode is sent before a drawing operation that uses the hilite mode.

$OO1E DefHilite Use default hillte color

• No data. Set hilite to default (from low memory)..

The next four opcodes ($0090, $0091, $0098, $0099) are modifications of existing (version 1)
opcodes. The first word following the opcode is the row Bytes. If the high bit of the rowBytes is
set, then it is a pixMap containing multiple bits per pixel; if it is not set, it is a bitMap containing
one bit per pixel. In general, the difference between version 1 and 2 formats is that the pixMap
replaces the bitMap, a color table has been added, and pixData replaces the bitData.

Note: Opcodes $0090 and $0091 are only usedfor rowbyres less
than 8.

$0090 BitsRect

pixMap:
colorTable:
srcRect Rect
dstRecc Reci

• mode: Word;
PixData

copybits, reeL clipped

(described in Table 4
(described in Table 4

source rectangle
(destination rectangle

transfer mode (may include new transfer modes)
described in Table 4)

Name Description

I
I

Supporting QuickDraw Pictures Page 21

Table 3. Data format of version 2 PICI’ opcodes (continued)

Opcode Name Description

$0091 BitsRgn copybits, rgn clipped

pixMap: (described in Table 4)
colorTable: { described in Table 4 }
srcRect Rect (source rectangle)
dstRecc Rect (destination rectangle)
mode: Word; (transfer mode (may include new transfer modes))
maskRgn: Rgn (region for masking)
PixData { described in Table 4 }

$0098 PackBitsRect packed copybits, rect clipped

pixMap: (described in Table 4 }
colorTable: (described in Table 4 }
srcRect Reci (source rectangle)
dstRect Rect (destination rectangle }
mode: Word; (transfer mode (may include new transfer modes))
PixData { described in Table 4)

$0099 PackBitsRgn packed copybits, rgn clipped

pixMap: { described in Table 4 }
colorTable: { described in Table 4)
srcRect Rect (source rectangle }
dstRect Rect { destination rectangle }
mode: Word; f transfer mode (may include new transfer modes) }
maskRgn: Rgn; (region for masking)
PixData (described in Table 4)

Table 4. Data types found within new PICI’ opcodes listed in Table 3

Opcode Name Description

pixMap = baseAddr long; (unused 0 }
rowBytes: word; (rowBytes w/high byte set }
Bounds: rect (bounding rectangle)
version: word; (version number =0 }
packType: word; (packing format =0 }
packSize: long; (packed size =0) V

hRes: fixed; (horizontal resolution (default = $0048.0000)}
vRes: fixed; (vertical resolution (default = $0048.0000))
pixelType: word; (chunky format =0 }
pixelSize: word; { # bits per pixel (1,2,4,8))
cmpCounc word; (# components in pixel = 1 }
cznpSize: word; (size of each component pixelSize for chunky }
planeBytes: long; (offset to next plane =0 }
pmTable: long; (color table =0)
pmReserved. long; (reserved =0 }

end;

Page 22 Supporting QuickDraw Pictures

Table 4. Data types found within new PICT opcodes listed in Table 3 (conrnwed)

Opcode Name Description

colorTable = crseed long; (id number for color table =0)
nsndexword (flagsword=0}
ctSize word; (numberof ctTable enthes- 1)

(ctSize +1 color table enthes)
(each enty = pixel value, ied, green, blue: word }

end;

pixData: If rowBytes <8 then data is unpacked
data size = rowBytes*(bounds.bortombounds.top);

If rowBytes >= 8 then data is packed.
Image contains (bounds.bottom-bounds.top) packed scanlines.
Packed scanlines are produced by the PackB its routine.
Each scanline consists of [bytecount] [data].
If rowBytes > 250 then byteCount is a word, else it is a byte.

end;

Supporting QuickDraw Pictures Page 23

