
•
Macintosh
Technical Notes

Index

Developer Technical Support

June 1992

Note: Trap names can appear in two different places: under the name of the trap alphabetically and at the end of
the index, prececded by an underscore U.

•

•

107,744 280
%_InitObj 105
%_MethTables 93, 105
%_SeIProcs 93
'030 129,230
-mc68881 146
.Aout driver 249
.ATP driver 224, 250
.Bout driver 102, 102
.ENET driver 271
.MPP driver 224, 250, 311
.Print driver 102
.XPP driver 250, 270
/BERR 292
/HALT 292
1.4 MB 230
1.44 MB 230
128K ROM 198, 224,232
24-bit addressing 212, 213, 285
24-bit mode 213, 228,229
32-bitaddressing 212,275,285
32-bit bus 230
32-bit c1ean 212
32-bit clean ROM 176
32-bit mode 205, 213, 228, 229
32-Bit QuickDraw 193,229, 275, 276, 277, 289
32K barrier 256
4 Mbit DRAMs .176
400K disk 70
68000 PDS 230
68030 PDS 230
80-bit format 146
800K disk 70
8·24 GC Display Card 289
96-bit format. 146
@ operator 42, 117
AIUX 212, 229,278,283,284

system calls 283
AO 228
A5 25, 136, 180, 208,239,256
A5Init 256
A5Size 256
AAddNode 3II
ABPasIntf. 132
ABridge 9
absolute pointing device 266

Index

abusive 276
accelerator upgrades 285
acceptChildDiedEvents 205
acceptSuspendResumeEvents 205
access error 292
access privileges 186
accRun 248
AClose 311
Action Atom 75
Activate Palette 211
ad-hoc 292
ADB 143, 160,206,266

boot process 206
cables 206
driver installation 206
microcontroller 206
references 206
service routine 206

ADBReInit. 143
ADBS 206
AddDrive 36, 108
AddNocIe 311
AddReference 2
AddResMenu 191, 198
address arithmetic 213
addressing 212, 213

24-bit. 212, 213
32-bit. 213

ADelNode .311
AEP 270
ADEV .311
AFP 186, 195
afraid to ask 171
AGetInfo 311
AGetN"odeRef 311
AInstall .311
Alarm Clock 85, 184
Allegro Common Lisp 231
AllocContig 218
allSlaveBlockSizes 288
alpha version 189
ALRT 23
alternate screen 113
alternate screen buffer.. 2, 126
alternate sound buffer 2, 126
ANSI 208

1 of 19

Macintosh Technical Notes

ANSI C 246,3l3
AOpen 311
app4Evt. 158
APPL 29
Apple Desktop Bus 160, 206, 266, 271
Apple Desktop Bus Manager 206
Apple HD SC Setup 134
Apple menu 85, 180, 184
Apple Sound Chip 19, 230, 268
AppieCD SC 293
AppleShare 66, 114, 115, 116,

................................ 137, 165, 167, 186,216,229
AppleTalk 9,20, 121. 132; 133, 142, 195. 199,

.........................201,224.225,250,270,311,313
AppleTalk Echo Protocol., .270
AppleTalk Filing Protocol.. 186. 195
AppleTalk Manager.. 9. 195. 199.201.224,225,

..250.270
AppleTalk Phase 2 249.250.270, 311
AppleTalk Session Protocol.. 195
AppleTalk Transaction Proto 9, 20, 270
AppleTalk Transition Queue .250, 311
Apple_Driver 258
appIFont. 191
application 29, 48.192,211,242

font 192, 242
palette 2ll
signature 29, 48

application parameters 256
ApplZone 2
array-dialog-item 231
arrow keys 160
artificial intelligence 231
ASC 19
asexual 247
ASIC 271,291
ASP 195
assembly language 200, 223
asynchronous 249, 271

driver 249
I/O 271
serial communication 249

atDrvrVersNum 129,250
atom 75,75
ATP 9,20,270
ATPGetRequest 20
ATPLoad 20,224
ATPPBPtr 199
ATPResponse 20
ATPUserData 250
ATTransCableChange 311
ATTransCancelClose .311
ATTransCancelNameChange .311
ATTransClose 31 I
ATTransClosePrep .31 I
ATTransNameChangeAskTask 311
ATTransNameChangeTellTask 3ll
ATTransNetworkTransition .311
ATTransOpen 311
ATTransSpecdChange .311

2 of 19

audio CD-ROM 66
auto-polling 206
automatic style substitution 198
autoTrack 196
auxiliary window list 227
AUX_FS_FREE_SPACE 229
back off algorithm 270
BackColor 73
background 158. 180, 192

printing 192
process 180

bad block sparing 287
badMoveErr 229
baseAddr 41.275
BCD 189,293
BCLR 2
Berkeley 4.2 File System 229
beta version 189
bHasPersonalAccessPrivileges 186
BigBro 256
binary coded decimal 293
bitmap .41, 117. 120, 193,277
BitMapRgn 193
BitMapToRegion 193
black and white 276
Black Lectroids 247
blessed folder 20. 67, 129. 229
block servers 20
block transfers 288
BNDL 29. 48, 147.210.217
Bo3bdar 139
boards 234
boot blocks I13,134
boot time 247
BootDrive 77
booting 134
brain-damaged 248
break, serial. 56
BSET 2
BufPtr 2, 81, 285
bug

ADB 206
Allegro Common Lisp 231
AppleShare 137
ChangedResource 188
FCBPBRec 87
GetVlnfo 157
LaserWriter 192
LaserWriter ROMs 123
MacApp 280
MPW 200
PBLockRange 186
PrGeneral 173
Script Manager 264
SCSI 96
SCSI Manager 258
TEScroll 22
TextEdit 82, 131, 267
WaitNextEvent 177

bundle .40.48, 147. 189

Index

•

•

•

•

•

•

Developer Technical Support

Bus Error Exception Processing 292
bus error handler.. .292
bus locking 221
bus master 288
byte smearing 282
byteCount. 171
C 164, 166,200, 246, 265
C++ 265
C++ 281
cable 10, 65

video .144
Cable Range Transition Event .311
cache 117,261
CacheCom 81
caching 81
calcCRgns 212
CallAddr 250
callback procedures 265
callback routines 256
calling conventions 256
canBackground 158, 180,205,231
canceling 263
card power allocation 260
cards 234

NuBus 288
caring 161
case sensitive 229
CatMove 218
CCR 2
CD-ROM 66,229,293

disc formats 209
driver 271,293
Foreign File Access 209, 293
formats 209
High Sierra 209
ISO 9660 209 .
Primary Vol. Descriptor .209
Standard Identifer Field 209
Val idator. 209

CD001 209
CDEF 23, 196,212

message parameter 196
param parameter .196

cdev 215, 251
IIfx Serial Switch 271, 284
keyboard 160
messages 215

cdFlags .277
cell rectangle pointer .279
CGrafPort 120, 211,259
ChangedResource 188
Char2Pixel 207
charcter spacing 72
CharWidth 26, 82
CheckRsIRecord 173
checksum 7, 258
checkS umFlag 311
Chooser 197
ChooserBits .250
cicn 275

Index

June 1992

CInfoPBRec 204
ckid 269
Class Info Table 239
C1eanupDeRezzedViews 280
clearDev 215
click-click mode 260
clikLoop 82
clikS tuff 127
clip region 59, 72
clipping 72
ClipRect. 59
CLOS 231
Close 278
close transition 250
CloseASWorld 256
CloseResFi1e 116
C1oseWD 218
CLUT 120,244
clut. 277
CMOS 291
CODE 220, 228, 256
code

segment. 53
self modifying 117

code module 256
color 277

cursor. 244
dialog 231
look-up table 120, 277
mapping 277
menu 231
models 259
printing 73, 120
table 277

Color QuickDraw 41, 73, 120, 129, 163,
.......................................230, 244, 259, 275, 277

colorization 163, 277
Command key 263
Command-period 263
Common Lisp Object System 231
common signal 230
compact disc 209, 293
CompactMem 51
compatibility 2, 25, 83, 103, 117, 126, 129,

................. 155, 156, 176,212,227,229,230,232,

.......................................268,271,273,282,284
HFS 44
large-screen displays 100
Standard File 47

compleat. 274
completion routine 180
compressed data 171
condition code register 2
configuration fi1e 115
Connect Control Blocks 161
connector, external drive 10
consenting user 276
control call 272
control definition functions 196
Control Manager. 196, 203, 212

3 of 19

Macintosh Technical Notes

Control Panel.. 134, 215, 251
Control Panel Device 215, 251
controlErr 161
ControlHandle 197
controls 197
coprocessor 235, 236
copy protection 117
CopyBits 55, 163
copyDev 215
CopyMask 163
CopyPalette 211
Coral Software 231
countryCode 189
CPUFlag 2
CreateResFile .101, 214
creator 29
csCode 272
csParam 262, 272
CTRL 23
CTS 56
ctseed 277
CurDirStore 80
CurrentA5 25, 136
CURS 215
cursing 244
cursorDev 215
curSysEnvVers 129
CUST 135
custom WDEF 290
cutDev 215
CWindow 211
CWindowPtr 120
damn the fragmentation 281
DashedLine 91
DashedStop " 91
data cache 261
Data Cycle Fault Address 292
Data Delivery Protocol 270
Data Fork 203
data server 20
data structures 227
Datagram Delivery Protocol 9, 270
dataHandle, in WindowRecord 79
dates 264
DB-19 10
DB-25 10
DB-9 10
dBoxProc 180
DCE 71, 108, 187,248,250,272
dCtIDriver 71, 248
DCtIEntry 266
dCtlPosition 187, 272
OCtlQHdr 250
dCtIRefNum 56
dCtIStorage 266
DDP 9,270
dead key 160
dead keys 263
death 276
death by ROM .117

4 of 19

deathdwarf 168
debugger FKEY 256
debugging 7,42,51, 151,235
Declaration ROM 230
declaration ROM 288
decoding PICTs 171
deferred task 221
Deferred Task Manager 271
definition procedure 227
Delay 2
depth 276
dereferenced handle 232
dereferencing 213
design 227
derived class 307
desk accessory 5, 23, 184,248
DeskHook 247
Desktop 194, 210, 247
Desktop Bus 206
Desktop file 29,48, 134,210

limitations 210
destRect. 237
development version 189
Device Control Entry 248, 272
device driver 56, 71, 184, 187,229,258,262,278
Device Manager 197,257,262,272,293
device packages 197
device server 20
device-independent printing 122, 152
Diagnostic Raw Track Dump 272
dialog

filter 34
hook 47
item 112
item text behavior 267
modeless 5
user item 34

Dialog Manager 203,251,267
DialogSelect. 34
DIBadMount. 70
DirCreate " " 218
direct color device 275
Direct Memory Access 285
directory name 226
DirID 69, 77, 140,229,238,246
disc 209
discipline 117,151
disk drive, foreign 28
Disk Driver 272
disk driver 287

SCSI 285
disk errors 287
Disk First Aid 94, 134
disk initialization 70
Disk Initialization Package 287
DisposeA5World 256
ditherCopy 275,277
DITL 23,251
DIZero 70
DlgCopy 215

Index

•

•

•

•

•

•

Developer Technical Support

DIgCut. 215
DlgDelete 215
DIgPaste 215
DLOG 23
DMA 221, 261, 285

burst transfer 230
dNeedTirne 248
DoCaret. 82
DoDraw 82
doFace 207
doToggle 207
double-sided disk 70
downloading font... 217
dQDrvSize 36
draft mode 72
DraftBi ts .128
DragHook 247
DRAM 176
dRamBased 71
DrawChar 26
drawCntl 196
DrawControls 203
drawing 41,60,275,277

icons 55
offscreen 120,277
on the desktop 194

DrawPicture 21, 59
DrawString 26
DrawText. 207
drive number 77
drive queue 36, 108
Drive Status 272
driver 71, 108, 221, 248, 282

name 102
seriaI. 56

drivers 283
drop folder. 165
DrvQEI 36
Drvrlnstall 108
DrvrRemove IO8
EDisk driver 255
EDisks 255
Edit 84
Edit'Text 251
EFNT 84
Eject Disk 272
ejection, premature 106
Electronic Disks 255
Elems881 146
empty objects 72
end-of-file, range lock .186
end-of-line 127
end-of-line character 229
EndFormsPrinting 91
EnumerateCatalog 68
env68030 129
envExtISOADBKbd 129
environs Version 129
envMacII 129
envMacIIci 129

Index

June 1992

envMacIIcx 129
envMacIIfx 129
env MacIIx 129
envPortable 129
envPortADBKbd 129
envPortISOADBKbd 129
envSE30 129
envSeITooBig 129
envStdISOADBKbd 129
EOF 188
Erase calls 72
Erase Disk 287
ERIK 126
error handling, bus errors 292
errors, NuBus 292
ETAB 84
EtherTalk 250, 271, 311
event

key code 160
key-down 263
mask 202
mouse-moved 205
network 142
queue 229

Event Manager 202,229
EventAvail. 194
evil 247
Excellent CD 293
exception 2
exception handler 292
Exception Stack Frame 292
Exception Vector Table 292
executable code resource 228
exitserver 91
expansion cards 230, 254, 255
expansion interface 230
Extended 146
Extended Keyboard 206

LEDs 206
extensible applications 256
external drive 10
external file system 66, 229
external routines 135
external termination 273
faceless background task 205
fake handle 117
fall through 161
FBsyErr 180
FCB 102, 229
FCBPBRec 87
FCBSPtr 102
FCMT 29
fctb 198
fdComment. 29
fdFIags 40
FDHD 230
fdopen 246
features 227
fgnd 167
file cache .313

5 of 19

Macintosh Technical Notes

file filter 47
File Manager. 66, 186, 203, 204, 218,

........... ..226, 238, 246, 287
file servers 20
FILE struct 246
file system 24,44,66,67,68,69, 77, 81, 87, 94,

.......... .102, 106, 107, 108, 130, 140, 157, 179, 190
filename 107

length 229
fi Iter procedure " 34
filterProc 203
FindDltem 112
Finder 28, 40, 48, 114, 116, 126,

................. .134, 147, 189, 194,202,205,210,313
file comments 210
flags 40
launching 126
sublaunching 126

FindWord 182
FKEY 3
flag-counter byte 171
flag settings 276
Flagship Naming Service 311
flashing menu items 222
fi...ckdErr 229
floating-point

arithmetic 236
exception 235
unit 129, 146

Floppy Drive, High Density 230
FMOVE 235
FOB] 29
Focus 280
FOND .191, 192, 198,242,245
font 30

association table 198
color table 198
downloadable 217
family description 198
family ID 242, 245
family name 198
family number 191, 198,245
fractional width 26
height table 30
icon 217
name 191, 198
resources 198
scaled 26
strategy 191
strike resource 198
style attribute 198
styled 198
system 191

FONT 30, 92,191
FONT .198, 237, 245
font file 217
Font Manager. 72, 191, 198
Font Name Mapping Table 191
Font Registration Program 245
Font/DA Mover. 6, 23, 191, 198

6 of 19

fontf'orce 242
[open 246, 246
ForeColor 73
foreground application 167
Foreign File Access 293
forgiving 264
Format Disk 272
FormsPrinting 91
FPByteRangeLock 186
FPGetFileDirParms 137
FPIAR 236
FPMove 137
FPSetFileParms 137
FPU 129, 146, 236
FracLEnable 91, 92
fractional line width 91
fractional width font.; 26
fractional widths 72
fragmentation 281
Franz Inc 231
frComment 29
FREF 29, 48, 217
fRelN urn 246
FRESTORE 235
FSAVE 235
FScaleDisable 92
FSClose 102
FSFCBLen 66
FSOpen l02
fsread 246
full speed ahead 281
fwrite 246
GCR format 230,272
GDevice 79, 120
gdRect. 79
General-Purpose Input. 286
Gel Info 28, 147, 189,210
GetAppFiles 77
GetAppleTalklnfo 250
GetBridgeAddress 132
GetDCtIEntry 71
GetFNum 191
GetFontNaJ11e 191
GetFontNumber 191
gelFronlClicks 205
GetIcon 55
GetlndVolume 24
Getl'I'ext 18
GetLocaIZones 250, 270
GetMenu 78
GetMyQDVars 256
GetMyZone 250
GetNewflontrol 203
GetNewDialog .4, 34
GetNewWindow 4
GetNexLEvent.. 3, 5, 85, 194
GetOSEvent. 85
GetPalette 211
GetPhysical. 285
GetPixBaseAddress 275

Index

•

•

•

•

•

•

DeveloperTechnical Support

GetQDGlobs 256
GetResBase 6
GetResource 4, 154
GetRotn 128
GetRslDala 128, 173
GetStyIScrap 207
GetS ysJust. 267
GetTrapAddress 2
GetVlnfo .157
GetVol 77, 140
GetWDlnfo 218
GetWMgrPort. 194
GetZoneList.. 250, 270
gHaveAUX 238
gimmie 276
globals .104, 208, 227

in stand-alone code 256
QuickDraw 256
space 223

glue 219
gluecode 256
good time 248
GPi 286
GrafPort 41, 252
grapher 231
graphics device 120, 276
graphics tablet 266
GrayRgn 79,194
GroupCodedRecording 230, 272
grow zone function 136
GWorid 277, 289
gzProc 233
hand-feed paper. 33
handle 155,213

dereferenced 213
fake 117
nil. 7, 117

HandleObject 281
harddisk 134, 159
Hard Disk 20 272
HardRockCocoJoe 246
hardware 234
hardware access 229
hasColorQD 129, 230
HasDepth .276
hasFPU 129, 236
HashString 29
HClrRBit. 2
HCreate 218
HCreateResFile 214
HD SC Setup 134
heap zone 248
heat dissipation 260
height table 30
heuristic 270
HFS 2,44,66,67,68,69,77, 81, 87, 94,

................. 101, 102, 106, 107, 108, 130, 140, 157,

.......... .179,190,204,218,229,238,246,287,293
partition 229

HGetSlate 2

Index

June 1992

High Sierra 66,209,293
high-density disks 230
HLock 2
HNoPurge 2
HoldMemory 285
hook 279
HOpenResFile 214
horse-whipped 280
HParamBlockRec 66, 204
HPurge 2
HSetRBit. 2
HSetState 2
HUnlock 2
HwCfgFlags 212
HyperCard 168

background printing 168
bombs 168
bug 168
dialing the telephone 168
file format. 168
find 168
globals and XCMDs 168
HyperTalk 168
importing text 168
launching 168
on idle 168
playing sounds 168
printing problems 168
resource forks 168
selecting text 168
textword wrap 168
the heapspace 168
visualeffects 168

HyperCard 'snd ' resource 168
HyperTalk 168
I/O 246
I/O processor 271
IAC 180
ICN# 29,48, 55, 147,217,252
ICON 23, 55, 253
icons in menus 253
ID=33 151
IEEEspecification 234
IIfx Serial Switchcdev 271
iIOAbort. 161
imageoperator 73
ImageWriter 3, 33, 72, 73, 95, 128

AppleTalk 124, 125
iMemFullErr 161
IMMED 2, 44
in-line

assembly language 126
glue routines 208

IncludeProcSet. 192
indm 75
infr 75
INIT 129,247,256
initOev 251
initgraphics 91
initializing Managers 129

7 of 19

Macintosh TechnicalNotes

InitMenus 211
initMsg 197
InitPalettes 211
InitWindows 53
inrl 75
Installer 75
installing memory 176
instruction cache 261
interapplication comm 180
interface 247
intemational 241, 242, 243

keyboards 263
internet. 9, 270
interprocess communication 180, 289
interrupt 85, 206, 221, 271

handler 25,278
latency 221
priori ties 257
serviceroutine .180

intersegmentfunctioncall 220
NfL 153
intIForce 242
intrasegment function call 220
inZoomln 79
inZoomOut 79
ioCompletion 130
ioDirlD 77
ioDrParID 226
ioFCBlndx 87
ioFDirlndex 69
ioFileType 102
ioFIFndrInfo 40
ioFINum 77
ioFIVersNum 102
ioFVersNum 204
ioNamePtr 69, 179
ioNewDirlD 226
ioNewName .226
lOP 271, 284

Bypassmode 271
ioPosMode, fsFromLEOF 186
ioPosOffset. 187
ioVClpSize 204
ioVDRefNum 106
ioVDrvlnfo 106
ioVFndrlnfo 67
ioVFrBIks .157
ioVFSID 66
ioVNmAIBlks 157
ioVSigWord 66
ioWDDirID .140
ioWDProclD 77, 190
IPC 180,289
iPrAbort. .161
iPRBitsCtl 192
iPrSavePFil IGI
is32BitCompatible 205
IsDialogEvenL 5
ISO 293
ISO 9660 66, 209

8 of 19

it hurts when I do that. 281
itemlcon 253
itI0 153,264
itll 153
itI2 153,178
itlb 153.160
itlc 153, 160, 178
IUGetlntI 153,242
IUStrData 178
IWM 2
jADBProc 206
Jane's Heap 248
Japanese MacintoshPlus 138
jGNEFilter. 85
jimmies 55
jump out 161
jump table 220,239,256
justification 267
KanjiTalk 138
KbdType 160
KCHR 153, 160,263
kcrnal 229
key code 160
key mapping 160. 263
key-down event. 263
KeylTrans 160
Key2Trans 160
keyboard

Apple Desktop Bus 160
driver 143
identifying 160
ISO 160
Macintosh I60
Macintosh Plus 160

keypad 160
Kill I/O 272
KillAIIGetReq 250
KiIlGZProc 233
KilINBP 199
kJudge 280
KMAP I60
LAddAEQ 250
LAP 9
Lap Manager 250
largecapacity media 210
large-screen displays lOO
Laser Prep 152
LascrShare 133
LaserWriter 72, 91, 123, 128, 133, 152,

.......................................175, 183, 192, 198,217
latency 285
launch 126
LaunchFlags 126
layer 180
LazyPass 256
LDEF 279
LcadingEdge flag 241
LeftSide flag 241
LGetAEQ 250
line 279

Index

•

•

•

•

'.

•

Developer Technical Support

line breaks 92
line layout 72, 91, 92
line width, fractional.. 91
lineHeight. 237
LineLayoutOff.. 72, 91
LineLayoutOn 91
LineS tarts 267
lInitMsg .279
LINK 88
Link Access Procotol 9
linker 256
Lisp 231
list definition procedure 279
List Manager 203, 279
listDefProc 203
Listen RO 206
live installation 75
LkUp 270
Lo3Bytes 213
lock & eject tabs 234
lock range 186
LockMemory 285
LockMemoryContiguous 285
logical address space 285
LongDateRec 264
LongDateTime 264
lookup request 225
low-level forrnat.. 287
low-level printing 124
low-memory 2

globals 117,212
lPRDocOpen 192
IPRPageOpen 192
IReadDispatch .311
IRect. 279
LRmvAEQ .250
Luke 72
MABuild 280
Mac. Allegro Common Lisp 231
MacApp 220,239, 265, 280, 313
MacApp.Lib 280
machine-specific signal. 230
machineType 129
MacinTalk .268
Macintosh

IIci 144
IIfx 27],273
IIx 230
LC 144,291
Portable 254, 255
SE/30 .230
Video Card]44, 262

Macintosh OS 229,278
MACL .231
MacPaint 3, 86, 171
MacsBug 7,] 13, 271, 313
magnetic media 287
main entry point 256
major switching 180
MakeA5Worid .256

Index

June 1992

master 288
master pointer. 7, 53, 228

block 53
master pointers 213
math coprocessor 235, 236
MaxApplZone 103
maxDevice 120
MBAR 23
MBarHeight 117
MBDF 23, 227
MC68020 282
MC68030 261, 282, 292
MC68040 292
MC68881/MC68882 146, 235, 236
mChooseMsg 222
MDEF 23, 172, 194,222
MDS 103
MDS Edit 84
media errors 287
MemErr 7
memory

configuration 176
jumper 176
leaks .307
size resistor 176

memory allocation 281
Memory Management Unit.. 2, 228, 230, 261
Memory Manager. 41,205,213,219,

...228,229,252
MemTop 285
MENU 23, 222
menu

flashing 222
record 222

menu bar definition proc 227
Menu Manager. 222, 253
menultem 253
MenuList. 85
methods 265
MFM format. 230, 272
MFS .44, 66, 68, 102,204
MFTempHandle 205
minor switching 180
MMU 2, 228, 230, 260, 313
modal dialog 34, 247
ModalDialog 34, 203
modeless dialog 34
Modified Frequency Mod 230, 272
modifyReadOnly 269
monitor

cable I44
NEC MultiSync I44
sense signals 144
Sony Multiscan 144
Taxan Super Vision 770 144
VGA I44

Monitors cdev 276
monochrome display 230
moral of this story 234
MoreMasters 53

9 of 19

Macintosh Technical Notes

mouse 10
mouse-moved event 205
mouseDown 205
mouseRgn 205
mouseUp 205
MovelfHi 103, III
moving files 226
MPNT file 86
mPopupMsg 172
MPPOpen 224
MPPPBPtr. 199
MPW 103, 121, 146, 193,200,223,

...240, 256, 281
%_MethTables 93, 105
%_SeIProcs 93
68881 235
assembly language 200
bugs 200
C 164, 166,200,232,313
globals from assembly 104
linker 93
Object PascaL I05
OS Interface Library 200
Pascal 200
Projector. 269
SANE 235
Toolbox Library 200
tools 239
version 2.0.2 200
version 3.0 129, 200, 208, 219
_DataInit 93
(SLOAD) 93
(MC68881-) 146

MS-DOS 230
mst# 205
mstr 205
multi-screen environment. 79
Multidisk Installer 75
MultiFinder 2, 126, 158, 177, 180, 185,

.......................................190, 194,202,205, 233
A5 180
Apple menu .180
background application 180
growzone proc 233
IAC 180
IPC 180
launching .126,180
Opendocument. 205
Quit application 205
SADE 205, 271
scrap 180
sleep 177
splash screen 180
sublaunching 126
switching 180
System 6.0 205
UnmountVol 180
WaitNextEvent 177
working directory 190

multiFinderAware 205

10 of 19

multinode addresses 311
multiple bus masters 261
multiple inheritance 281
Multiple Node Architecture 311
MyWindowDef 256
naked 280
Name BindingProtocol.. 9, 199,225,250,270,311
narrow GrafPort 60
NBP 9, 199,225,250,270,311
nbpDuplicate 225
NBPLookUp 9, 20
NBPRegister 20
negZcbFreeErr 151
nested procedures 265
network event 142
Network File System 229
network installation 75
network router 270
NetworkTransition Event.. 311
NetWrite 311
NewGWorld 277
NewHandle 7,117
NewHandleClear 219
NewHandleSys 219
NewHandleSysClear 219
NewPLrClear. 219
NewPtrSys 219
NewPtrSysClear 219
NFNT 30, 198,245
NFS 229
NGctTrapAddress 156
nil, handle 117
nil, pointer 117
nirvana 168
nmf-lags 184
nmMark 184
mnPrivate 184
NMRec 184
nmRefCon 184
nmReserved 184
nmResp 184
nmSIcon 184
nmSound 184
nmStr 184
nmType I84
nmTypErr 184
no component area 234
no woman 21
no cry 21
node 270
noDraftBits 128
non-breaking space 274
non-exactly-once 9
non-Macintosh systems 240
non-Roman script systems 242, 267
NOP 271
NoSuchRsl 161
Notification Manager 184,229,247
nrct -4096 197
NScndRequest. 270

Index

•

•

•

•

•

•

Developer Technical Support

NSetPalette 211
nsvErr , 24
NuBus 221, 230, 234, 260, 261,

..................271,275,278,282,288,289,292,313
expansion cards 260
extender board 148
power limits , 260

nulls 107
nullScrap 207
numeric Version 189
Num Version 189
Object Class 239
object inspector 265
Object Pascal 239, 265
object-oriented programs 220
objects 239, 281
off-line volume 106
off-screen

bitmap .41, 163,277
pixel map 120, 277

old-style colors 259
onlyBackground 205
OOP 220, 239
Open 102
open transition 250
OpenA5World 256
OpenDriver 249
OpenPicture 21
OpenPort 155, 194
OpenResFile .46,46, 78,101, 185,214
OpenRF 74
OpenRFPerm 116, 185
OpenSocket 20
OpenWD 218
Opblotlmpl 161
optimizing compilers 208
opWrErr 185
ordered address comparison .213
OSDispatch 158
OSLstEntry 288
OSUtils.h .208
OSUtils.p .208
out-of-sequence 9
overdrawing power. 260
overrated 265
owned resource 6
PACK -4096 197
PackBitsRect 171
PackBitsRgn 171
packed data 171
Paged Memory Mgmt. Unit 2,228,230,261
Palette Manager 211
PAP 133
paper motion 33
ParamBlockRec 204
parameter passing 256
parent directory .226
parity RAM 176
Pascal 200, 265, 313
pasteDev 215

Index

June 1992

patching traps 213, 227
pathname 238
pathname separator 229
Pattern 86
pat'Type 275
PBGetCatlnfo 68,69
PBGetFCBInfo 87
PBGetFileInfo 68
PBGetFInfo 24
PBGetVInfo 24,44, 157
PBGetWDInfo 77, 190
PBHGetVInfo 24, 67, 77, 106, 157
PBHOpen 204
PBHSetVol 140
PBMountVol. 134
PBOpenRF 74
PBOpenWD 77, 190
PBRead 187
PBSetVInfo 204
PBStatus 262
PBWrite 187
PC 228
PCL 231
PDS 230, 254, 291
period 263
Persist. 256
physical memory 285
PicComment. 91, 175, 181
picFrame 59
picPolyClo 91
PICT 23, 274
PICT file 154, 171
PICT2 171,275
PictFontInfo 275
picture 21, 59, 181
picture comment 72, 91, 175

application-defined 181
picVersion 21
PID 269
pin-feed paper 33
pinout. 10, 65

video 144
PixData '" 171
pixel

alignment 277
image 120
map 120, 193,277

pixel map 289
PixeI2Char 207,241
PixMap 41, 120, 163,275,289
Pixmap32Bil. 275
pixmapTooDeepErr 193
PixPat. 275
pLaunchStruct 126
Ploilcon 55
PlotSICN 252
pin 211
PmBackColor 211
pmBootSize 258
PmForeColor 211

11 of 19

Macintosh Technical Notes

PMMU 230
PMSP 69, 77, 101,214
pmVersion 275
PNTG file 86
pointer 155,213

dereferenced 213
nil 117

pointing device 266
Poly Begin 91
PolyEnd 91
Polylgnore 91
PolySmooth 91
Poor Man's Search Path 69. 77. 101,214
popup menu 172
PopUpMenuSelect.. 156
port 249
Portable Common LOOPS 231
PortAUse 249
PortBUse .224. 249
PortID 250
portlnUse 249
portNotCf. 249
portRect 59
posCntl 196
POST 91
PostScript... 72. 91.123.152.175.183,192.217

position-independent 183
PostScriptBegin 91
PostScriptEnd 91
PostScriptFile 91
PostScriptHandle 91
potential nastiness 250
power budget .254.260
PrCloseDoc 161
PrClosePage 72
PrDlgMain 95
PREC 103 192
PREC 201 192
PrError 161
PrGeneral... 72. 128. 161. 173
primary volume descriptor.. 209
print action routine 174
print dialog 95
Print Land 161
Print Monitor 184. 192
printable paper area 72
PrintDefault 122
printer

driver 2
shared 125

Printer Access Protocol 133
printing 72. 192

color 73. 120
device independent 72, 122
device-independent 152
document name 149
driver 72. 161. 217
error handling 161
forms 91
high-level calls 192

12 of 19

low-level calls 124. 192
picture comment 72
selected printer 72
spool/print-a-page 125
spooling 72
time out 161

printing look 161
Printing Manager 72. 161. 192
privileged instructions 229
PrJobDialog 72. 95.161
PrJoblnit 95
PROCEDURE parameters 265
procedure pointer 42
processor 292
processor direct slot 230. 254
processor ROM 255
ProcPtr 184
ProDOS 230
program counter 228
Projec tor 269
PrOpenDoc 161
PrOpenPage 72
proprietary 68000 systems 240
protected environment 229
protocol handler 201
protocol violation 235
PrSetError. 161
PrSLlDialog 72. 95. 161
PrStlInit 95
PrValidate 72, 122. 128. 149
PSetSelfSend 250
pseudo-DMA 96
public System Folder 229
PurgeMem 51
QDError 275
qRags 250
qLink 184
qType 184
queue 2
QuickDraw 21.26.41.55.59,60, 72,

........................ 120, 154, 163. 171. 181, 193, 198.

.......................................203, 259, 275, 277. 289
color 73, 120. 129, 163, 277
global variables 223, 256
internal picture definition 21
speed 277
text measuring 26
transfer mode 277

race condition 9
Radius 100
RAM 176,313

EDisks 255
expansion slot 176

RAMSDOpen 249
range locking/unlocking 186
RAS-access time 176
raw keycode 160
re-entry 248
Read 187
Read-Modify-Write 271

Index

•

•

•

•

•

•

Developer Technical Support

readOnly 269
ReadPacket. 201
ReadRest 201
real time 221
Receiving Packets .311
reduced icon 253
reentrancy 285
refNum 184
refnum 250
region 193
regions 72
RegisterName 225
release notes 274
remapping key codes 160
removable media 285
RemoveNode .311
reqCableLo 311
reqCablelIi .311
resChanged .111
ResEdit 40,231,274
ResError. 116, 185,214
ResErrProc 78
RESET 278
ResLoad 50
resNotFound 161
resource 141, 228

ADBS 206
ALRT 23
APPL 29
atom 75
BNDL. 29, 48, 147,210,217
CDEF 23, 196,212
cicn .275
ckid 269
clut. 120, 244,277
CODE 220, 228,256
CTRL 23
CURS 215
CUST 135
DlTL 23,251
DLOG 23
EFNT 84
ETAB 84
FCMT 29
fctb 198
fgnd 167
file 46
file header 61
FKEY 3,256
FOBJ 29
FOND 191, 192, 198,242,245
FONT 30, 198,237,245
fork 74
FREF 29,48,217
ICN# 29,48,55, 147,217,252
ICON 23, 55, 253
ill 23,203
indm 75
infr 75
INIT 129,247,256

Index

June 1992

inrl 75
installation 75
INTL 153
itI0 153, 264
itI1 153
itI2 153,178
itlb 153, 160
itlc 153, 160, 178
KCHR 153, 160,263
KMAP 160
LDEF 279
maximum number of 141,210
MBAR 23
MBDF 23, 227
MDEF 23, 172, 194,222
MENU 23, 222
mst# 205
mstr 205
NFNT 30, 198,245
nrct -4096 197
owned 23
PACK -4096 197
PICT 23, 274
pltt 211
POST 91
PREC 192
reserved type 32
SICN l60, 252, 253
SIZE 158, 180,205,231
SMAP 274
snd 168
STR 29, 48
sysz 293
vers 189, 274
WDEF 23, 79, 194,212,256
XCMD 256

Resource Manager 198, 203, 204,210,214,
..232,252

ResourcePS 91
response procedure 184
RestoreA5 136,208
RestoreA5Wor ld 256
RestoreGZProc 233
result code 117
Resume event 180
retry mechanism 270
Return Drive Info 272
Return Format List.. 272
Return Media Icon 272
Return Physical Drive Icon 272
Rez 189, 197,269
RGBColor 120
rgnTooBigErr 193
RJ-11 10
RmveReference 2
ROM

checksum 139
debugger 38
EDisks 255
expansion 255

13 of 19

Macintosh Technical Notes

SIMM 176, 230
ROM85 117
ROMBase 100
ROMMaplnsert.. 78
RotateBegin 91
RotateCenter 91
RotateEnd 91
round trip 270
router 250, 270
roving allocation scheme 229
rowBytes 117,277
rPage 33,72
rules 227
run-time environment. 240
Runtime.o 256
SADE 280
SADE MultiFinder.. 205, 271
safe family experience .279
safe hex .231
SAGlobals 256
SampleINIT 256
SANE .l46, 235, 236
Sarah Connor 273
sBlock'I'ransferInfo 288
SCC 2, 271, 286
SCNolnc 96
scrapCount. 180
screen depth 276
screenBits 2, 117
screenBits.bounds 79
script code 242
script interface system 245
Script Manager 160, 174, 178, 182,207,

.........................241,242,243,245,263,264,267
ScriptCheck 75
scripting 75
ScrnBase 117
SCSI.. 134, 159,271,273

connector 65
driver 258
termination 273

SCSI device 293
SCSI disk drivers 285
SCSI Manager 96, 212, 258

pseudo DMA 96
SCSICmd 96
SCSIComplete 96
SCSIGet. 96
SCSIRBlind 96
SCSIRead 96
SCSIStat. 96
SCSIWBlind 96
SCSIWrite 96
SearchProc 289
secondary sound buffer 113
secondary video buffer 113
see your dentist .265
segment. 53, 307

numbering 231
Segment Loader 220, 256

14 of 19

segments 256
selected printer 72
SendRequest 250,270
SerHShake 56
serial connector 10, 65
serial driver 56, 249, 283, 284
Serial Manager 229
Serial Switch cdev 284
SerStatus 56
servers 20
Set Tag Buffer 272
SetA5 208
SetA5Worid 256
SelCLlValue 197
SetCurrentA5 208
SetDepth 276
SetDltem 34
SetEventMask 202
SetLineWidth 91, 175
SetMenuBar 180
SetPalette 211
SetResAttrs 78
SetResLoad 50
SetResPurge Ill
SetRsl 128
SetSysJust 267
SetTrapAddress 2
SetUpA5 136,208
SetWordBreak 267
SFGetFile .47, 77, 80, 107
SFPGetFile .47,80
SFPPutFile 47
SFPulFile 47, 80, 107
SFReply 44
SFSaveDisk 80
shared

bit 116
file 116,186
printer 125

Sharing Setup cdev 311
sheet-feeder 33
shell 126
Shift key 263
shortVersion 189
ShowControl. 197
ShowINIT 247
showpage 91
SICN 160,252,253
sicnList. 252
signals 88
signature 29,48
SIMM 176
Single Inline Memory Module 176
single-sided disk 70
sinker 279
SIZE.. 158, 180,205,231
size limitation 237
Skippy 189
slave 288
sleep mode 254

Index

•

•

•

•

•

•

Developer Technical Suppon

slot
interrupt queue element... 257
VBL time 221

Slot Manager 229,230
small icons 252, 253
smaller and faster 273
SMAP .274
sMaxLockedTransferCount .288
smKCHRCache 263
smUninterp 245
snd 168
socket listener 201, 270
Software Licensing 198, 206, 271
Sony driver 28, 70, 81, 102,271,272
Sorter 256
sorting, international.. 153
sound 19, 268

speech 268
stereo 230

Sound Driver 19
Sound Manager.. 19, 180,212,229,235,268
source code control system .269
Space Aliens .206
SPConfig 224, 249
speech

driver 268
synthesizer .268

Speed Change Transition Event.; 311
splash screen 180
spline 91
spooling 192

page 72
PICT 154
spooler 133

SQPrio 257
srcBytes 171
sResource entries 288
SRQ polling 206
stack

handling 208
pointer 208

stand-alone code 239, 256
Standard File 2,44,47, 77, 80, 126, 204, 238
standard identifer field .209
standard string comparison 178
Start Manager 230, 258
StartSound 19
startup application 2
startup disk 134
startup documents 129
static link 265
stationery .115
Status .262
status call 272
stdBuf 192
StdFi1e .203
stdState 79
stepIntoMethod 280
StepMerhod 280
stereo sound 230

Index

June 1992

Stil1Down 194
STR 29,48
StringBegin 91
StringEnd 91
StringWidth 26
style 207
style attribute 198
Styled Fonts 198
Styled TextEdit. 207
sub1aunch 126,205
SuperDrive 230
supervisor mode 2
Suspend event. 180
SVFS 229
swapping MMU mode 228
SWIM 230, 271
switching 180

major 180
minor 180
update 180

synchronous I/O 271
SysEdit 215
SysEnvirons 67, 103, 129, 156, 190,207
SysEnvRec 129
system

error 33 151
font 191,242
heap 81, 83, 113

system extension 256
System Software 6.0.5 229,267,275,276
System Software 7.0 287
System V File System 229
SystemEdit 180, 215
SystemEvent. 5, 85
SystemTask 85
sysz 293
SysZone 2
tablet driver 266
tags 94
tail patches 212
Talk RO 206
TANSTAAFL 203
TApplication 280
TBSYSTEM 229
TCommand 280
TControl 280
TCtIMgr 280
TDeskScrapView 280
TDialogView 280
TDocument. 280
TeachText 274
teCarHook 82
TEContinuousStyle 207
TECopy 207
TECustom Hook 207
TECut. 207
TEDelete 207
TEDispatch 207
TEDispatchRec 267
TEditText 280

15 of 19

Macintosh Technical Notes

TEDoText. 82
TEDrawHook 207,267
TEEoIHook 207, 267
teForceLeft. 267
TEHandle .207, 251
teHiHook 82
TEHitTestHook 207, 267
TEHook .207
telustCenter 267
tel us tLeft. 267
teJustRight .267
TEKey 207
teLength .203, 237, 267
telephone-style jack 10
Temp. Memory Allocation 205
TENumStyles .207
TERec 207,237
TERecord 207
termination 271, 273
Terminator 273
TEScro11. 22, 131
TEScrpLength 82
teSelRect. 82
TESetSelect 127
TESetStyle 131, 207
TEStylInsert. 131
TEStylNew 131
TESysJust .267
TEWidthHook .207, 267
TEXT 84
text. .207,274

bold 207
clipping 267
dialog boxes .267
italic 207
justification 267
plain .207
rotation 91
styled .207

TextBegin 91
TextBox 207
TextCenter 91
TextEdit.. 22, 82, 127, 131, 156, 203, 207,

... .237,267
data structures 207
System 6.0 207
version 3.0 267

TextEnd 91
TextlsPostScript 91
TextS ty Ie 207
Textstyle tsFace 207
TGetRsIBlk 173
TGridView 280
thePort. 25
Thought Police 117, 276
thumbCntl 196
Ticks 227
Tlcon 280
TID .250
time 264

16 of 19

Time Manager 2, 180
timers 270
timing 221
tirade 247
TList 280
TMON 7
tMWDOErr 126
TNumberText 280
TokenTalk 250
Toolbox .227, 229
Toolbox Event Manager 160,263
TPopup 280
TPrDlg 95
TPrStl. 72
track cache 81
Track Cache Control 272
traffic 270
transaction ID validity 250
Transaction Request 270
Transaction Response 270
transfers, NuBus 288
Transition Queue .311
TRAP 2
trap

interface 227
patch 25, 212

TRcI Timer 250, 270
TReq 270
TResp 270
TScroller 280
TS tdPrin tHand ler 280
TTEView 280
TTL 291
ttro 274
ttxt 274
TView 239,280
TWindow 280
txFont. .242,245
ufox 293
UFS 229
uncompressed data 171
undocumented 227
undoDev 215
Unimplemented 156
UniquelID 198
UNIT 256
unit attention 96
unit table 71
UNIX 229
UNLK 88
unlock range 186
unpacked data 171
unused 31, 49, 227
update switching 180
UpdateGWorld 277
Updatekesf'ile 116, 188
upgrading memory 176
useMFTempBit. 275
user

items 34

Index

•

•

•

•

•

•

Developer Technical Support

stack pointer. 2
user function 75
user-installed FPU 129
User-Interface Police 180
userItem 203
userS tate 79
USP 2
UTableBase 250
VEL

interrupts .221
task 180, 268

VBR 292
VCB .229

queue 24,44
vcbDRetNum 106
vcbDrvNum 106
vector base register 292
Verify Disk 272
verify flag indicator byte 225
verifyFlag 225
vers 189, 274
Version 189
version control.. 269
versionRequested 129
VersRec 189
VersRecHandle 189
VersRecPtr 189
VIA 2
VIAl 291
VIA2 271
VIABase 117
video

buffer 2
card pinouts 144
connector pinouts 144

viewRect 82
viral infection 231
virtual keycode 160
virtual memory 203, 229, 285, 292, 313
visRgn 194
VM .285
vMAttrib 186
voila 274
volume 24, 106

off-line 106
volume bitmap .287
volume pathname 229
vRefNum 44, 77, 126,238
vSync 271
vtable 281
WaitMouseUp 194
WaitNextEvent.. 158, 177, 194
wake up 254
warranty 176
WDCB 126
WDEF 23,79,79,194,212,256,290
wDev 72
WDProcID 126
wDraw 290
wdRefNum 44, 77

Index

June 1992

WDRefNum 126
WDS 311
wicked fast. 271
width table 92
window

default state 79
definition function 290
user-selectable state 79
zooming 79

Window Manager 79, 203
windowKind 5
WMgrPort 53, 194
word-break table 182
working directory 44, 77, 126, 190

control block 126
ID 238

Write 187
Write Data Structure .311
WriteLAP 250
WriteResource 111, 188
WStateData 79
X80ToX96 146
X96ToX80 146
XCMD 256
xppRetry 270
xppTimeout 270
Z8530 286
zcbFree 151
ZIP 9, 250, 270
Zone Information Protocol.. 9, 250, 270
zooming windows 79
ZoomRect. 194
_ADBOp 160,206
_ADBReInit 206
_Alert 248
_Allocate 229
_AllocContig 229
_AUXDispatch 229,283
_BitClr 248
_BitSet. 248
_CalcMask 193
_CatMove 226
_Chain 126,180
_ClosePicture 275
_CopyBits .41, 120,252,259,275,277,289
_CountADBs 206
_Create 229
_DataInit 93
_DeferUserFn 285
_DialogS elect 251
_DIBadMount 287
_DIFormat. 287
_DIVerify 287
_DIZero 287
_DragGrayRgn 193
_DragTheRgn 247
_DrawChar 72
_DrawPicture 259
_DrawString 72, 192
_DrawText 72

17 of 19

Macintosh Technical Notes

_EraseRect. " 72
_EventA vail 180
_FindWindow 79
_Font2Script 242
_FontScript. 242
_ForeCo1or 259
_FSOpen 246
_FSWrite 246
_Gesta1t. 146, 283
_GetADBInfo .206, 266
_GetCatInfo 226
_Ge tCTab1e 244
_GetDirAccess 229
_GetEnvirons 243, 263
_GetIndADB 206
_GetNewWindow 79
_GetNextEvent .180, 205
_GetPixBaseAddr 213, 289
_GetResource 228, 263
_GelWRefCon 227

GetZone 248
_Hand1eZone 248
_HandToHand ; 227
_HideDItem 251
_HwPriv 261, 271, 286

InitFonts 72
_InitGraf. 223
_InitWindows 247
_InsetRgn 193
_IntIScript 242
_IntlTokenize .264
_KeyScript. 160
_KeyTrans 160,263
_Launch .126, 180,205
_Loca1ToG1oba1 120
_LongSecs2Date .264
_Memory Dispatch 285
_MenuSe1ect 180
_MFMemTop .205
_MFTempNew Handle .205
_MFTopMem 205
_Moda1Dia1og 248
_NewHand1e 41,205, 233
_NewPtr 41
_NewRgn 193
_NewWindow 41, 79
_NGetTrapAddress 212
_NMInstall 184
_NMRemove 184
_OffsetRect. 72
_Open 224, 229, 249
_OpenCPicture 275
_OpenDriver 293
_OpenPicture 275
_OpenResFile 213,232
_OpenRF .229
_OpenRFPerm 213,232
_OpenWD 126
_PackBits 86, 171
_PBCatMove .226, 229

18 of 19

_PBClose 278
_PBConlro1 293
_PBGetCatInfo 238
_PBHGetYInfo 66
_PBHGetYo1Parms 186

vMAttrib 186
_PBLockRange 186
_PBOpenWD 126
_PBRead 229
_PBSlatus 293
_PBUnlockRange 186
_PBWrite 229
_PostEvent 180,229
_PrC1ose 161
_PrCtlCall 192
_PrDrvrOpen 192
_PrOpen 72, 161
_PrOpenDoc 192
_PROpenPage 192
_PllnRgn 193
_PutScrap 180
_QDOffscreen 275
_RecoverHandle 213, 232
_SeleclWindow 205
_SelADBInfo 206, 266
_SclCatInfo 229
_SclCCursor 244
_SelEnvirons 243
_SetEOF 229
_SelFileInfo 229
_SclFPos 246
_SetFractEnab1e 72
_SclGrowZone 233
_SelMenuBar 180
_SclOrigin 72
_SclScript. 160
_SelTrapAddress 213
_SclWRefCon 227
_SetZone 248
_SFGetFi1e 205
_SIntlnstall 221, 257
_SlotVlnstall 221
_Slalus 262
_Slring2Date 264
_StripAddress .212, 213, 228, 232
_SwapMMUMode 213, 228
_SysBeep 19, 268
_S ysEdit. 180
_SysEnvirons 66, 120, 129, 146,

............................... .184,212,230,236, 249, 250
_SystemTask 248
_TECa1Text 267
_TEGetHeight 267
_TEldle 251
_TENew 227
_TERep1aceSty1e 267
_TESetJust 267
_TESetSty1e 267
_TEUpdate 267
_TextSox 72, 267

Index

•

•

•

•

•

•

Developer Technical Support

_TickCount. .227
_TrackBox 79
_Trackf'ontrol 196
_TrackGoAway 247
_UnionRgn 193
_UnmountVol 180
_UnPackBits 86, 171
_WaitNextEvent... 126, 180,205
_ZerQScrap 180
_Zoom Window 79
{SLOAD} 93
{MC68881-} .146

Index

June 1992

19 of 19

•

•

Macintosh Technical Notes

• #1 : Desk Accessories and System Resources

See also:

Written by:
Updated:

The Resource Manager

Bryan Stearns February 25, 1985
March 1, 1988

This note formerly described a strategy for dealing with system resources
from desk accessories. We no longer recommend calling ReleaseResource
or DetachResource for a system resource. When you are done with a
system resource, leave it alone; do not try to dispose or release it.

•

•
Technical Note #1 page 1 of1 Desk Accessories and System Resources

•

•

•

•
Macintosh Technical Notes

#2: Compatibility Guidelines

Written by: Cary Clark
Scott Knaster

Modified by: Louella Pizzuti
Updated:

January 21, 1986

February 9, 1987
March 1, 1988

•

Apple has many enhancements planned for the Macintosh family of computers. To help
ensure your software's compatibility with these enhancements, check each item in this
note to be sure that you're following the recommendations.

If your software is written in a high-level language like Pascal or C and if you adhere to
the guidelines listed in Inside Macintosh, many of the questions in this note won't
concern you. If you develop in assembly language, you should read each question
carefully. If you answer any question "yes," your software may encounter difficulty
running on future Macintosh computers, and you should take the recommended action
to change your software.

Do you depend on 68000 instructions which require that the processor be
in supervisor mode?

In general, your software should not include instructions which depend on supervisor
mode. These include modifying the contents of the status register. Most programs which
modify the status register are only changing the Condition Code Register (CCR) half of
the status register, so an instruction which addresses the CCR will work fine. Also, your
software should not use the User Stack Pointer (USP) or turn interrupts on and off.

Do you have code which executes in response to an exception and relies
on the position of data in the exception's local stack frame?

Exception stack frames vary on different microprocessors in the 68000 family, some of
which may be used in future Macintosh computers. You should avoid using the TRAP

instruction. Note: You can determine which microprocessor is installed by examining
the low-memory global CPUFlag (a byte at $12F). These are the values:

•

CPUFlag
$00
$01
$02
$03

Technical Note #2

microprocessor
68000
68010
68020
68030

page 1 015 Macintosh Compatibility Guidelines

Do you use low-memory globals not documented in Inside Macintosh?

Other microprocessors in the 68000 family use the exception vectors in locations $ 0
through $FF in different ways. No undocumented location below the system heap ($100
through $13FF) is guaranteed to be available for use in future systems. •

Do you make assumptions about the file system which are not consistent
with both the original Macintosh File System and the Hierarchical File
System?

Your applications should be compatible with both file systems. The easiest way to do
this is to stick to the old files system trap calls (which work with both file systems) and
avoid direct manipulation of data structures such as file control blocks and volume
control blocks whenever possible.

Do you depend on the system or application heaps starting at a hard-coded
address?

The starting addresses and the size of the system and application heaps has already
changed (Macintosh vs. Macintosh Plus) and will change again in the future. Use the
global ApplZone to find the application heap and SysZone to find the system heap.
Also, don't count on the application heap zone starting at an address less than 65536
(that is, a system heap smaller than 64K).

Do you look through the system's queues directly?

In general, you should avoid examining queue elements directly. Instead, use the •
Operating System calls to manipulate queue elements.

Do you directly address memory-mapped hardware such as the VIA, the
sec, or the IWM?

You should avoid accessing this memory directly and use trap calls instead (disk driver,
serial driver, etc.). Future machines may include a memory management unit (MMU)
which may prevent access to memory-mapped hardware. Also, these memory-mapped
devices may not be present on future machines. The addresses of these devices are
likely to change, so if you must access the hardware directly, get the base address of the
device from the appropriate low-memory global (obtainable from includes and interface
files):

device
VIA
SCCRd
SCCWr
IWM

Technical Note #2

global
$104
$108
$10C
$1EO

page 2 of 5 Macintosh Compatibility Guidelines

•

•
Do you assume the location or size of the screen?

The location, size, and bit depth of the screen is different in various machines. You can
determine its location and size by examining the QuickDraw global variable
s c re enB its on machines without Color QuickDraw. On machines with Color
QuickDraw, the device list, described in the Graphics Devices chapter of Inside
Macintosh, tells the location and size and bit depth of each screen, s c re enB its
contains the location and size of the main device, and GrayRgn contains a region
describing the shape and size of the desktop.

Does your software fail on some Macintosh models or on A/UX?

If so, you should determine the reason. Failure to run on all versions of the Macintosh
may indicate problems which will prevent your software from working on future
machines. Failture to run on A/UX, Apple's Unix for the Macintosh, also may indicate
such problems.

Do you change master pointer flags of relocatable blocks directly with
BSET or ecin instructions?

In the future and on NUX, all 32 bits of a master pointer may be used, with the flags byte
moved elsewhere. Use the Memory Manager calls HPurge, HNoPurge, HLock,
HUnlock, HSetRBit, HClrRBit, HGetState, and HSetState to manipulate the
master pointer flags. (See the Memory Manager chapter of Inside Macintosh Volume IV
for information on these calls.)

• Do you check for 128K, 512K, and 1M RAM sizes?

You should be flexible enough to allow for non-standard memory sizes. This will allow
your software to work in environments like MultiFinder.

Is your software incompatible with a third-party vendor's hardware?

If so, the incompatibility may prevent your software from working on future machines.
You should research the incompatibility and try to determine a solution.

Do you rely on system resources being in RAM?

On most of our systems, some system resources are in ROM. You should not assume,
for example, that you can regain RAM space by releasing system resources.

Does your software have timing-sensitive code?

•
Various Macintoshes run at different clock speeds, so timing loops will be invalid. You
can use the trap call Delay for timing, or you can examine the global variable Ticks .

Technical Note #2 page 3 of 5 Macintosh Compatibility Guidelines

Do you have code which writes to addresses within the code itself?

A memory management unit (MMU) may one day prevent code from writing to
addresses within code memory. Also, some microprocessors in the 68000 family cache
code as it's encountered. Your data blocks should be allocated on the stack or in heap •
blocks separate from the code, and your code should not modify itself.

Do you rely on keyboard key codes rather than ASCII codes?

The various keyboards are slightly different; future keyboards may be different from
them. For textual input, you should read ASCII codes rather than key codes.

Do you rely on the format of packed addresses in the trap dispatch table?

The trap dispatch table is different on various Macintoshes. There's no guarantee of the
trap table's format in the future. You should use the system calls GetTrapAddress and
SetTrapAddress to manipulate the trap dispatch table.

Do you use the Resource Manager calls AddReference or RmveReference?

These calls have been removed from the 128K ROM. They are no longer supported.

Do you store information in the application parameters area (the 32 bytes
between the application and unit globals and the jump table)?

This space is reserved for use by Apple.

Do you depend on values in registers after a trap call, other than those
documented in Inside Macintosh?

These values aren't guaranteed. The register conventions documented in Inside
Macintosh will, of course, be supported. Often, you may not realize that your code is
depending on these undocumented values, so check your register usage carefully.

Do you use the IMMED bit in File Manager calls?

This bit, which was documented in early versions of Inside Macintosh as a special form
of File Manager call, actually did nothing for File Manager calls, and was used only for
Device Manager calls. With the advent of the Hierarchical File System, this bit indicates
that the call has a parameter block with hierarchical information.

Do you make assumptions about the number and size of disk drives?

There are now five sizes of Apple disks for the Macintosh (400K, 800K, and 20M, 40M,
80M), as well as many more from third-party vendors. You should use Standard File and
File Manager calls to determine the number and size of disk drives.

•

•
Technical Note #2 page 4 of 5 Macintosh Compatibility Guidelines

Do you depend on alternate (page 2) sound or video buffers?

Some Macintoshes do not support alternate sound and video buffers.

• Do you print by sending ASCII directly to the printer driver?

To retain compatibility with both locally-connected and AppleTalk-connected printers,
you should print using Printing Managerr, as documented in Inside Macintosh.

Does your application fail when it's the startup application (i.e., without
the Finder being run first)?

If so, you're probably not initializing a variable. If your application does not work as the
startup application, you should determine why and fix the problem, since it may cause
your application to fail in the future.

•

•
Technical Note #2 page 5 of5 Macintosh Compatibility Guidelines

•

•

•

Macintosh Technical Notes

• #3: Command-Shift-Number Keys

See also: The Toolbox Event Manager
Technical Note #11 Q-MPW: Writing Standalone Code

Written by:
Modified by:
Updated:

Harvey Alcabes
Ginger Jernigan

March 3,1985
April 25,1985
March 1, 1988

In the standard system, there are two Command-Shift-number key combinations that are
automatically captured and processed by GetNextEvent. The combinations are:

Command-Shift-1
Command-Shift-2

Eject internal disk
Eject external disk

•
Numbers from 3 to 9 are also captured by GetNextEvent, but are processed by calling
'FKEY' resources. You can implement your own actions for Command-Shift-number
combinations for numbers 5 to 9 by defining your own 'FKEY' resource. The routine
must have no parameters. The 10 of the resource must correspond to the number you
want the routine to respond to. For example, if you want to define an action for
Command-Shift-B, you would create an 'FKEY' resource with an 10 of 8. The 'FKEY'
resource should contain the code that you want to execute when the key is pressed.

The following Command-Shift-number key combinations are implemented with 'FKEY'
resources in the standard System file.

•

Command-Sh ift-3

Command-Sh ift-4
(with Caps Lock on)

Save current screen as MacPaint file named
Screen 0, Screen 1, ... Screen 9
(Works in one-bit mode only on Mac II)

Print the active window (to an ImageWriter)
Print the entire screen (to an ImageWriter)

Technical Note #3 page 1 of 1 Command-Shift-Number Keys

•

•

•

Macintosh Technical Notes

• #4: Error Returns from GetNewDialog

See also:

Written by:
Updated:

The Dialog Manager

Russ Daniels April 4, 1985
March 1, 1988

•

When calling GetNewDialog to retrieve a dialog template from a previously opened
resource file, how are error conditions indicated to the caller?

Unfortunately, they aren't. The Dialog Manager calls GetResource and assumes the
returned value is good. Since the Dialog Manager doesn't check, you have two choices.
Your first choice is to call GetResource for the dialog template, item list, and any
resources needed by items in the item list yourself. But what do you do when you find
the resources aren't there? Try to display an alert telling the user your application has
been mortally wounded? What if resources needed for the alert aren't available?

The second, simpler alternative is to assure that the dialog template and other resources
will be available when you build your product. This is really an adequate solution: If
somebody uses a resource editor to remove your dialog template, you can hardly be
blamed for its not executing properly.

A good debugging technique to catch this sort of problem is to put the value $50FFCOOl
at absolute memory location 0 (the first long word of memory). If you do that, when the
Dialog Manager tries to dereference the nil handle returned by the Resource Manager,
you'll get an address error or bus error with some register containing $50FFCOOl. If you
list the instructions around the program counter, you'll often see something like:

MOVE.L (A2l,AI
MOVE.L (AIl,AI

; in effect (Ol,AI
; the error Occurs here

•

GetNewWindow and most of the other "GetSomething" calls will return nil if the
"something" is not found.

Technical Note #4 page 1 of 1 Error Returns from GetNewDialog

•

•

•

Macintosh Technical Notes

• #5: Using Modeless Dialogs from Desk Accessories

See also:

Written by:
Updated:

The Toolbox Event Manager
The Dialog Manager
The Desk Manager

Russ Daniels April 4, 1985
March 1, 1988

When a desk accessory creates a window (including a modeless dialog window) it must
set the windowKind to its refnum-a negative number. When the application calls
GetNextEvent, the Event Manager calls SystemEvent, which checks to see if the
event belongs to a desk accessory. SystemEvent checks the windowKind of the
frontmost window, and uses the (negative) number for the refnum to make a control call,
giving the desk accessory a shot at the event. Then SystemEvent returns TRUE, and
GetNextEvent returns FALSE.

So, your desk accessory gets an event from SystemEvent. Since your window is a
modeless dialog, you call IsDialogEvent, which mysteriously returns FALSE. What is
going on?

• Like SystemEvent, IsDialogEvent checks the windowKind of windows in the window
list, looking for dialog windows. It does this by looking for windows with a windowKind of
2. In this case, it finds none, and does nothing.

The solution is to change the windowkind of your window to 2 before calling
IsDialogEvent. This allows the Dialog Manager to recognize and handle the event
properly. Before returning to SystemEvent, be sure to restore the windowKind. That
way, when the application calls the Dialog Manager with the same event (the
application should pass all events to Dialog Manager if it has any modeless dialogs
itself), the Dialog Manager will ignore it.

•
Technical Note #5 page 1 of 1 Using Modeless Dialogs from DAs

•

•

•

Macintosh Technical Notes

• #6: Shortcut for Owned Resources

See also: The Resource Manager
Technical Note #23-

Life With FonVDA Mover-Desk Accessories

Written by:
Updated:

Bryan Stearns May 10,1986
March 1, 1988

•

To allow the FontiOA Mover to renumber desk accessories as needed when moving
them between system files, desk accessories should use the "owned resource" protocol
described in the Resource Manager chapter of Inside Macintosh Volume I.

All resource lOs in a desk accessory should be zero-based. At runtime, a routine can be
called to find the current "base" value to add to a resource's zero-based value to get the
actual current 10 of that resource. Then, when a resource is needed, its zero-based
value can be added to the resource base value, giving the actual resource 10 to be used
in future Resource Manager calls.

Here's the source to a handy routine to get the resource base value, GetResBase:

;FUNCTION GetResBase(driverNumber: INTEGER): INTEGER;

;GetResBase takes the driver number and returns the ID
;of the first resource owned by that driver. This is
;according to the private resource numbering convention
;documented in the Resource Manager.

GetResBase FUNC

•

MOYE.L
MOYE.W
NOT.W
ASL.W
ORI.W
MOYE.W
JMP

END

Technical Note #6

(SP)+,AO
(SP)+,DO

DO
#5,DO
#$COOO,DO
DO, (SP)
(AO)

page 1 of 1

Get return address
Get driver number
Change to unit number
Move it over in the word
Add the magic bits
Return function result
and return

Shortcut for Owned Resources

•

•

•

Macintosh Technical Notes

• #7: A Few Quick Debugging Tips

Written by:
Updated:

Jim Friedlander April 16, 1986
March 1, 1988

•

•

This presents a few tips which may make your debugging easier.

Setting memory location 0 to something odd

Dereferencing nil handles can cause real problems for an application. If location 0 (nil)
is something even, the dereference will not cause an address error, and the application
can run on for quite a while, making tracing back to the problem quite difficult. If location
o contains something odd, such as $5 OFFCO 01, an address error will be generated
immediately when a nil handle is dereferenced. On Macintoshes with 68020s, like the
Mac II, this same value ($50FFC001) will cause a bus error. An address error or bus
error will also be generated, of course, when the ROM tries to dereference a nil handle,
such as when you call HNoPurge (hndl) , where hndl is nil.

Some versions of the TMON debugger set location 0 to 'NIL!' ($4E494C21) or
$50FFCOOl. If you are using MacsBug, you should include code in your program that
sets location O. Of course, there is no need to ship your application with this code in
it-it's just for debugging purposes. Old versions of the Finder used to set location 0 to
the value $464F424A ('FOBJ'). On newer machines, newly launched applications get
location 0 set to $00F80000 by the Segment Loader.

Checksumming for slow motion mode

Entering the Macsbug command "S5 400000 400000" will cause Macsbug to do a
checksum of the location $ 4 00000 every time an instruction is executed. Checksum the
ROM, because it will not change while your program is executing (the ROM may change
in between launches of your application, but that's OK)! This will cause the Macintosh to
go into slow motion mode. For example, you will need to hold down the mouse button
for about 10 seconds to get a menu to pull down-you can see how the ROM draws
menus, grays text, etc.

This technique is very handy for catching problems like multiple updates of your
windows, redrawing scroll bars more than once, that troublesome flashing grow icon,
etc. To turn slow motion mode off, simply enter MacsBug and type "ss".

Technical Note #7 page 1 of 2 A Few Quick Debugging Tips

TMON performs this function in a different way. Instead of calculating the checksum after
each instruction, it only calculates checksums after each trap. You can checksum
different amounts of the ROM depending on how much you want things to slow down.

Checksumming MemErr

A lot of programs don't call MemError as often as they should. If you are having strange,
memory-related problems, one thing that you can do to help find them is to checksum on
MemErr (the low memory global word at $220). In MacsBug, type "ss 220 221". In
TMON, enter 220 and 221 as limits on the 'Checksum (bgn end) :' line and on the line
above, enter the range of traps you wish to have the checksum calculated after.
When MemErr changes, the debugger will appear, and you can check your code to
make sure that you are checking MemErr. If not, you might have found a problem that
could cause your program to crash!

Checksumming on a master pointer

•

Due to fear of moving memory, some programmers lock every handle that they create.
Of course, handles need only be locked if they are going to be dereferenced and if a
call will be made that can cause relocation. Unnecessarily locking handles can cause
unwanted heap fragmentation. If you suspect that a particular memory block is moving
on you when you have its handle dereferenced, you can checksum the master pointer
(the handle you got back from NewHandle is the address of the master pointer). Your
program will drop into the debugger each time your handle changes-that is, either
when the block it refers to is relocated, or when the master pointer's flags byte changes. •

•
Technical Note #7 page 2 of 2 A Few Quick Debugging Tips

Macintosh Technical Notes

• #8: RecoverHandle Bug in AppleTalk Pascal Interfaces

See also:

Written by:
Updated:

AppleTalk Manager

Bryan Stearns April 21, 1986
March 1, 1988

Previous versions of this note described a bug in the AppleTalk Pascal
Interfaces. This bug was fixed in MPW 1.0 and newer.

•

•
Technical Note #8 page 1 of 1 Bug in AppleTalk Pascal Interfaces

•

•

•

•
Macintosh
Technical Notes

Developer Technical Support

#9: Will Your AppleTalk Application
Support Internets?

Written by:
Written by:

Sriram Subramanian & Pete Helme
Bryan Stearns

April 1990
April 1986

•

This Technical Note discusses how AppleTalk applications should work across internets, groups
of interconnected AppleTalk networks. It explains the differences between life on a single
AppleTalk network and life on an internet.
Changes since March 1988: Removed the section on AppleTalk retry timers, as it is no
longer accurate; see Technical Note #270, AppleTalk Timers Explained, for more information on
retry timers.

You can read about internets (AppleTalk networks connect by one or more bridges) in Inside
AppleTalk. What do you need to do about them?

Use a High-Level Network Protocol

Make sure you use the Datagram Delivery Protocol (DDP), or a higher AppleTalk protocol based
on DDP, like the AppleTalk Transaction Protocol (ATP). Be warned that Link Access Protocol
(LAP) packets do not make it across bridges to other AppleTalk networks. Also, don't broadcast;
broadcast packets are not forwarded by bridges (broadcasting using protocols above LAP is
discouraged, anyway).

Use Name Binding

As usual, use the Name Binding Protocol (NBP) to announce your presence on the network, as
well as to find other entities on the network. Pay special attention to zone name fields; the asterisk
(as in "MyLaser:LaserWriter:*") in a name you look up is now important; it means "my zone only"
(see the Zone Information Protocol (ZIP) chapter of Inside AppleTalk for information on finding
out what other zones exist). The zone field should always be an asterisk when registering a name.

Pay Attention to Network Number Fields

When handling the network addresses returned by NBPLookUp (or anyone else), don't be
surprised if the network number field is non-zero.

Am I Running on an Internet?

The low-memory global ABr i dge is used to keep track of a bridge on the local AppleTalk
network (NBP and DDP use this value). If ABridge is non-zero, then you're running on an
internet; if it's zero, chances are, you're not (this is not guaranteed, however, due to the fact that
the ABr idge value is "aged", and if NBP hasn't heard from the bridge in a long time, the value is
cleared).

#9: Will Your AppleTalk Application Support Intcrnets? 10f2

Macintosh Technical Notes

Watch for Out-Of-Sequence and Non-Exactly-Once Requests

Due to a "race" condition on an internet, it's possible for an exactly-once ATP packet to slip •
through twice; to keep this from happening, send a sequence number as part of the data with each
ATP packet; whenever you make a request, bump the sequence number, and never honor an old
sequence number.

Further Reference:
• Inside AppleTalk
• Inside Macintosh, Volumes II & V, The AppleTalk Manager
• Technical Note #250, AppleTalk Phase 2 on the Macintosh
• Technical Note #270, AppleTalk Timers Explained

•

•
20f2 #9: Will Your AppleTalk Application Support Intemets?

•
Macintosh Technical Notes

#10: Pinouts

See also: Macintosh Hardware Reference Manual
Technical Note #65-Macintosh Plus Pinouts

Written by:
Modified:
Updated:

Mark Baumwell April 26, 1985
July 23, 1985
March 1, 1988

•

This note gives pinouts for Macintosh ports, cables, and other products.

Below are pinout descriptions for the Macintosh ports, cables, and various other
products. Please refer to the Hardware chapter of Inside Macintosh and the Macintosh
Hardware Reference Manual for more information, especially about power limits. Note
that unconnected pins are omitted.

Macintosh Port Pinouts

Macintosh Serial Connectors (DB-9)

E.in
1
2
3
4
5
6
7
8
9

Na!:!J.e
Ground
+5V
Ground
TxD+
TxD­
+12V
HSK
RxD+
RxD-

Description/Notes

See Inside Macintosh for power limits

Transmit Data line
Transmit Data line
See Macintosh Hardware chapter for power limns
.!::!and.s.haKe: CTS or TRxC, depends on Zilog 8530 mode
Receive Data line; ground this line to emulate RS232
Receive Data line

Macintosh Mouse Connector (DB-9)

•

Pin
1
2
3
4
5
7
8
9

Name
Ground
+5V
GND
X2
X1
SW­
Y2
Y1

Description/Notes

See Inside Macintosh for power limits
Ground
Horizontal movement line (connected to VIA PB4 line)
Horizontal movement line (connected to SCC DCDA- line)
Mouse button line (connected to VIA PB3)
Vertical movement line (connected to VIA PB5 line)
Vertical movement line (connected to SCC DCDB-line)

Technical Note #10 page 1 of 6 MadntoshPinouts

Macintosh Keyboard Connector (RJ-11 Telephone-style jack)

.Ein
1
2
3
4

Name
Ground
KBD1
KBD2
+5V

Description/Notes

Keyboard clock
Keyboard data
See Inside Macintosh for power limits •

Macintosh External Drive Connector (08-19)

.Ein
1
2
3
4
5
6
7
8
10
11
12
13
14
15
16
17
18
19

t!aI:n.e
Ground
Ground
Ground
Ground
-12V
+5V
+12V
+12V
PWM
PHO
PH1
PH2
PH3
WrReq­
HdSel
Enbl2­
Rd
Wr

pescription/Notes

See Inside Macintosh for power limits
See Inside Macintosh for power limits
See Inside Macintosh for power limits
See Inside Macintosh for power limits
Regulates speed of the drive
Control line to send commands to the drive
Control line to send commands to the drive
Control line to send commands to the drive
Control line to send commands to the drive
Turns on the ability to write data to the drive
Control line to send commands to the drive
Enables the Rd line (else Rd is tri-stated)
Data actually read from the drive
Data actually written to the drive •

Other Pinouts

Macintosh XL Serial Connector A (08-25)

Pin
1
2
3
4
5
6
7
8
15
17
24

t!aI:n.e
Ground
TxD
RxD
RTS
CTS
DSR
Ground
DCD
TxC
RxC
TEXT

Description/Notes

Transmit Data line
Receive Data line
Request to Send
Clear To Send
Data Set Ready

Data Carrier Detect
Connected to TRxCA
Connected to RTxCA
Connected to TRxCA

•
Technical Note #10 page 20f 6 MacintoshPinouts

Macintosh XL Serial Connector B (OB-25)

•
Pin
1
2
3
6
7
19
20

~
Ground
TxD­
RxD­
HSK/DSR
Ground
RxD+
TXD+/DTR

Description/Notes

Transmit Data line
Receive Data line
TRxCB or CTSB

Receive Data line
connected to DTRB

Apple 300/1200 Modem Serial Connector (OB-9)

Modem Name Description/Notes
2 DSR Output from modem
3 Ground
5 RxD Output from modem
6 DTR Input to modem
7 DCD Output from modem
8 Ground
9 TxD Input to modem

Apple ImageWriter Serial Connector (OB-25)

•
ImageWriter
1
2
3
4
7
14
20

Name
Ground
SO
RD
RTS
Ground
FAULT­
DTR

Description/Notes

Send Data; Output from ImageWriter
Receive Data; Input to ImageWriter
Output from Image Writer

False when deselected; Output from ImageWriter
Output from ImageWriter

Apple LaserWriter AppleTalk Connector (OB-9)

•

LaserWriter
1
3
4
5
7
8
9

Name
Ground
Ground
TxD+
TxD­
RXCLK
RxD+
RxD-

Description/Notes

Transmit Data line
Transmit Data line
TRxC of Zilog 8530
Receive Data line
Receive Data line

Technical Note #10 page 30f 6 Macintosh Pinouts

Apple LaserWriter Serial Connector (D8-25)

LaserWriter
1
2
3
4
5
6
7
8
20
22

~

Ground
TXD­
RXD­
RTS­
CTS
DSR
Ground
DCD
DTR­
RING

Description/Notes

Transmit Data; Output from LaserWriter
Receive Data; Input to LaserWriter
Output from LaserWriter
Input to LaserWriter
Input to LaserWriter (connected to DCBB- of 8530)

Input to LaserWriter (connected to DCBA- of 8530)
Output from LaserWriter
Input to LaserWriter

•

Macintosh Cable Pinouts

Note for the cable descriptions below:

The arrows ("_/') show which side is an input and which is an output. For example, the
notation "a ~ b" means that signal "a" is an output and lib" is an input.

When pins are said to be connected on a side in the Notes column, it means the pins are
connected on that side of the connector.

Macintosh ImageWriter Cable
(part number 590-0169) •Macintosh

ill..6.9l
1
3
5
7
8
9

Ground
Ground
TxD- ~

HSK ~

RxD+
RxD- ~

RD
DTR
GND
SD

ImageWriler
(DB25)
1
7
3
20

2

pins 3, 8 connected on Macintosh side
RD = Receive Data

Not connected on ImageWriter side
SD = Send Data

Macintosh Modem Cable (Warning! Don't use this cable to connect 2 Macintoshesl)

(part number 590-0197-A)

Macintosh Name Modem ~

ill..6.9l ill..6.9l
3 Ground 3 pins 3, 8 connected on EACH side
5 TxD- ~ TxD 9
6 +12V ~ DTR 6
7 HSK ~ DCD 7
8 No wire 8
9 RxD- ~ RxD 5

•
Technical Note #10 page 40f 6 Macintosh Pinouts

Macintosh to Macintosh Cable (Macintosh Modem Cable with pin 6 clipped on both ends.)

Macintosh Name Macintosh ~

!OOID illllill

• 3 Ground 3 pins 3, 8 connected on EACH side
5 TxD- ~ RxD- 9
7 HSK ~ DCD 7
8 No wire 8
9 RxD- ~ TxD- 5

Macintosh External Drive Cable
(part number 590-0183-8)

•

Macintosh
LQB9.l
1
2
3
4
6
7
8
10
11
12
13
14
15
16
17
18
19

Ground
Ground
Ground
Ground
+5V
+12V
+12V
PWM
PHO
PH1
PH2
PH3
WrReq­
HdSel
Enbl2­
Rd
Wr

Sony prive
(20 Pin Ribbon)
1
3
5
7
11
13
15
20
2
4
6
8
10
12
14
16
18

•

Macintosh XL Null Modem Cable
(part number 590-0166-A)

Macintosh XL .MaIm QI.E ~
(0825) (0825)
1 Ground 1
2 TxD- ~ RxD 3
3 RxD- ~ TxD 2
4,5 RTS,CTS ~ DCD 8 pins 4, 5 connected together
6 DSR ~ DTR 20
7 Ground 7
8 DCD ~ RTS, CTS 4, 5 pins 4, 5 connected together
20 DTR ~ DSR 6

Technical Note #10 page 5016 MadntoshPinouts

Macintosh to Non-Apple Product Cable Pinouts

Macintosh to IBM PC Serial Cable #1 (not tested) •Macintosh Name IBM PC !'iQ.t.e.s.
!Q.6.9l (DB25)
3 Ground 7 pins 3, 8 connected on Macintosh side
5 TxD- ~ RxD 3
7 HSK +-- DTR 20
8 RxD+ Ground Not connected on IBM side
9 RxD- +-- TxD 2

CTS +-- RTS 4-5 pins 4, 5 connected on IBM side
DSR +-- DCD,DTR 6-8-20 pins 6, 8, 20 connected on IBM side

Macintosh to IBM PC Serial Cable #2 (not tested)

Macintosh Name IBM PC !'iQ.t.e.s.
tilliID (DB25)
1 Ground 1
3 Ground 7 pins 3, 8 connected on Macintosh side
5 TxD- ~ RxD 3
9 RxD- +-- TxD 2

CTS +-- RTS 4-5 pins 4,5 connected on IBM side
DSR +-- DTR 6-8 pins 6, 8 connected on IBM side

•

•
Technical Note #10 page 6016 Macintosh Pinouts

•

•

•

Macintosh
Technical Notes

Developer Technical Support

#11: Memory-Based MacWrite Format
Revised: August 1989

This Technical Note formerly described the format of files created by MacWrite® 2.2.
Changes since March 1988: Updated the CLARIS address.

This Note formerly discussed the memory-based MacWrite 2.2 file format. For information on
MacWrite and other CLARIS products, contact CLARIS at:

CLARIS Corporation
5201 Patrick Henry Drive
P.O. Box 58168
Santa Clara, CA 95052-8168

Technical Support
Telephone: (408) 727-9054
AppleLink: Claris.Tech

Customer Relations
Telephone: (408) 727-8227
AppleLink: Claris.CR

MacWrite is a registered trademark of CLARIS Corporation.

#11: Memory-Based MacWrite Format 1 of 1

•

•

•

•

•

Macintosh
Technical Notes

Developer Technical Support

#12: Disk-Based MacWrite Format
Revised: August 1989

This Technical Note formerly described the format of files created by MacWrite®, which is now
published by CLARIS.
Changes since March 1988: Updated the CLARIS address.

This Note formerly discussed the disk-based MacWrite file format. For information on MacWrite
and other CLARIS products, contact CLARIS at:

CLARIS Corporation
5201 Patrick Henry Drive
P.O. Box 58168
Santa Clara, CA 95052-8168

Technical Support
Telephone: (408) 727-9054
AppleLink: Claris.Tech

Customer Relations
Telephone: (408) 727-8227
AppleLink: Claris.CR

MacWrite is a registered trademark of CLARIS Corporation.

#12: Disk-Based MacWrite Format 1 of 1

•

•

•

•

•

•

Macintosh
Technical Notes

Developer Technical Support

#13: MacWrite Clipboard Format
Revised: August 1989

This Technical Note formerly described the clipboard format used by MacWrite®, which is now
published by CLARIS.
Changes since March 1988: Updated the CLARIS address.

This Note formerly discussed the MacWrite clipboard format. For information on MacWrite and
other CLARIS products, contact CLARIS at:

CLARIS Corporation
5201 Patrick Henry Drive
P.O. Box 58168
Santa Clara, CA 95052-8168

Technical Support
Telephone: (408) 727-9054
AppleLink: Claris.Tech

Customer Relations
Telephone: (408) 727-8227
AppleLink: Claris.CR

MacWrite is a registered trademark of CLARIS Corporation.

#13: MacWrite Clipboard Format 1 of 1

•

•

•

Macintosh Technical Notes

• #14: The INIT 31 Mechanism

See:

Written by:
Updated:

The System Resource File
The Start Manager

Bryan Stearns March 13, 1986
March 1, 1988

This note formerly described things that are now covered in the System
Resource File chapter of Inside Macintosh Volume IVand the Start Manager
chapter of Inside Macintosh Volume V. Please refer to Inside Macintosh.

•

•
Technical Note #14 page 1 of 1 The INIT 31 Mechanism

•

•

•

Macintosh Technical Notes

• #15: Finder 4.1

Written by:
Updated:

Harvey Alcabes April 12, 1985
March 1, 1988

This note formerly described Finder 4.1, which is now recommended only for
use with 64K ROM machines. Information specific to 64K ROM machines has
been deleted from Macintosh Technical Notes for reasons of clarity.

•

•
Technical Note #15 page 1 of 1 Finder Update

•

•

•

Macintosh Technical Notes

• #16: MacWorks XL

Written by:

Updated:

Harvey Alcabes
Mark Baumwell

May 11,1985

March 1, 1988

Earlier versions of this note described MacWorks XL, the system software
that allowed you to use Macintosh applications on the Macintosh XL.
Information specific to Macintosh XL machines has been deleted from
Macintosh Technical Notes for reasons of clarity.

•

•
Technical Note #16 page 1 of 1 MacWorksXL

•

•

•

•
Macintosh Technical Notes

#17: Low-Level Print Driver Calls

See also:

Written by:
Updated:

The Print Manager

Ginger Jernigan April 14, 1986
March 1, 1988

•

•

This technical note has been replaced by information in Inside Macintosh
Volume V. Please refer to the Print Manager chapter of Inside Macintosh
Volume V for information on low-level print driver calls.

Technical Note #17 page 1 of 1 Low-Level PrinterDriver Calls

•

•

•

Macintosh Technical Notes

• #18: TextEdit Conversion Utility

See also: Macintosh Memory Management: An Introduction
TextEdit

Written by:
Updated:

Harvey Alcabes April 10, 1985
March 1, 1988

•

Text sometimes must be converted between a Pascal string and "pure" text
in a handle. This note illustrates a way to do this using MPW Pascal.

Text contained in TextEdit records sometimes must be passed to routines which expect
a Pascal string of type Str255 (a length byte followed by up to 255 characters). The
following MPW Pascal unit can be used to convert between TextEdit records and Pascal
strings:

UNIT TEConvert;

{General utilities for conversion between TextEdit and strings}

INTERFACE

USES MemTypes,QuickDraw,OSIntf,ToolIntf;

PROCEDURE TERecToStr(hTE: TEHandle; VAR str: Str255);
{TERecToStr converts the TextEdit record hTE to the string str.}
{If necessary, the text will be truncated to 255 characters.}

PROCEDURE StrToTERec(str: Str255; hTE: TEHandle);
{StrToTERec converts the string str to the TextEdit record hTE. }

IMPLEMENTATION

PROCEDURE TERecToStr(hTE: TEHandle; VAR str: Str255);

BEGIN
GetIText(hTEAA.hText, str);

END;

PROCEDURE StrToTERec(str: Str255; hTE: TEHandle);

• END.

BEGIN
TESetText(POINTER(ORD4(@str) + 1), ORD4(length(str», hTE);

END;

Technical Note #18 page 1 of 1 TextEdit Conversion Utility

•

•

•

•
Macintosh
Technical Notes

Developer Technical Support

#19: How To Produce Continuous Sound
Without Clicking

Revised by:
Written by:

Jim Reekes
Ginger Jernigan

June 1989
April 1985

•

•

This Technical Note formerly described how to use the Sound Driver to produce continuous sound
without clicking.
Changes since March 1988: The continuous sound technique is no longer recommended.

Apple currently discourages use of the Sound Driver due to compatibility issues. The hardware
support for sound designed into the early Macintosh architecture was minimal. (Many things have
changed since 1983-1984.) The new Macintosh computers contain a custom chip to provide better
support for sound, namely the Apple Sound Chip (ASC). The ASC is present in the complete
Macintosh II family as well as the Macintosh SE/30 and later machines. When the older hardware
of the Macintosh Plus and SE are accessed, it is likely to cause a click. This click is a hardware
problem. The software solution to this problem was to continuously play silence. This is not a
real solution to the problem and is not advisable for the following reasons:

• The Sound Driver is no longer supported. There have always been, and still are,
bugs in the glue code for StartSound.

• The Sound Driver may not be present in future System Software releases, or future
hardware may not be able to support it. The Sound Manager is the application's
interface to the sound hardware.

• The technique used to create a continuous sound should have only been used on a
Macintosh Plus or SE, since these are the only models that have the "embarrassing
click." Do not use this method on a Macintosh which has the Apple Sound Chip.

• Using the continuous sound technique, or the Sound Driver for that matter, will
cause problems for the system and those applications that properly use the Sound
Manager. Also realize that SysBeep, which is a common routine that everything
uses, is a Sound Manager rOUtine.

• The continuous sound technique wastes CPU time by playing silence. With
multimedia applications and the advent of MultiFinder, it is important to allow the
CPU to do as much work as possible. The continuous sound technique used the
CPU to continuously play silence, thus stealing valuable time from other, more
important, jobs.

Further Reference:
• TheSoundManager, Interim Chapter by Jim Reekes, October 2, 1988
• Technical Note #180, MultiFinder Miscellanea

#19: How To Produce Continuous Sound Without Clicking i er r

•

•

•

Macintosh Technical Notes

#20: Data Servers on AppleTalk

See also:

Written by:
Updated:

The AppleTalk Manager
Inside LaserWriter

Bryan Stearns April 29, 1985
March 1, 1988

•

Many applications could benefit from the ability to share common data
between several Macintoshes, without requiring a file server. This technical
note discusses one technique for managing this AppleTalk communication.

There are four main classes of network "server" devices:

Device Servers, such as the LaserWriter, allow several users to share a single
hardware device; other examples of this (currently under development by third parties)
are modem servers and serial servers (to take advantage of non-intelligent printers such
as the ImageWriter).

File Servers, such as AppleShare, which support file access operations over the
network. A user station sends high-level requests over the network (such as "Open this
file," "Read 137 bytes starting at the current file position of this file," "Close this file," etc.).

Block Servers, which answer to block requests over the network. These requests
impart no file system knowledge about the blocks being passed, Le., the server doesn't
know which files are open by which users, and therefore cannot protect one user's open
file from other users. Examples of this type of server are available from third-party
developers.

Data Servers, which answer to requests at a higher level than file servers, such as
"Give me the first four records from the database which match the following search
specification." This note directs its attention at this type of server.

A data server is like a file server in that it responds to intelligent requests, but the
requests that it responds to can be more specialized, because the code in the server
was written to handle that specific type of request. This has several added benefits: user
station processing can be reduced, if the data server is used for sorting or searching
operations; and network traffic is reduced, because of the specificity of the requests
passed over the network. The data server can even be designed to do printing (over the
network to a LaserWriter, or on a local ImageWriter), given that it has the data and can
be directed as to the format in which it should be printed.

Technical Note #20 page 1 of 4 Data Servers on AppleTalk

ATP: The AppleTalk Transaction Protocol

ATP, the assured-delivery AppleTalk Transaction Protocol, can be used to support all
types of server communications (the LaserWriter uses ATP for its communications!).
Here is a possible scenario between two user stations ("Dave" and "Bill") and a data •
server station (UOneServer", a server of type "MyServer"). We've found that the
"conversational" analogy is helpful when planning AppleTalk communications; this
example is therefore presented as a conversation, along with appropriate AppleTalk
Manager calls (Note that no error handling is presented, however; your application
should contain code for handling errors, specifically the "half-open connection" problem
described below).

Establishing the Connection

Each station uses ATPLoad to make sure that AppleTalk is loaded. The server station,
since it wants to accept requests, opens a socket and registers its name using
NBPReg is t e r. The user stations use NBP Look Up to find out the server's network
address. This looks like this, conversationally:

Server: "I'm ready to accept
requests!"

Dave: "Any'MyServers'
out there?"

Dave: "Hey, MyServer! What
socket should I talk to you
on?"

Bill: "Any'MyServers'
out there?"

Bill: "Hey, MyServer! What
socket should I talk to you
on?"

Server: "Hi, Dave! Use Socket No"

Server: "Hi, Bill! Use socket M."

ATPLoad Opens AppleTalk
OpenSocket Creates socket
NBPRegister Assigns name to socket
ATPGetRequest queue a few asynchronous
ATPGetRequest calls, to be able to handle several
ATPGetRequest users

ATPLoad Opens AppleTalk •NBPLookup look for servers, finds OneServer

ATPRequest Ask the server which socket to
use for further communications

ATPLoad Opens AppleTalk
NBPLookup look for servers, finds OneServer

ATPRequest Ask the server which socket to
use for further communications

ATPOpenSkt Get a new socket for talking to Dave
ATPResponse Send Dave the socket number
ATPGetRequest Replace the used GetRequest

ATPOpenSkt Get a new socket for talking to Bill
ATPResponse Send Bill the socket number
ATPGetRequest Replace the used GetRequest

From this point on, the server knows that any requests received on socket N are from
Dave, and those received on socket M are from Bill. The conversations continue, after a
brief discussion of error handling.

•
Technical Note #20 page 2 of4 Data Servers on AppleTalk

•

•

•

Half-Open Connections

There is a possibility that one side of a connection could go down (be powered off,
rebooted accidently, or simply crash) before the connection has been officially broken. If
a user station goes down, the server must throwaway any saved state information and
close that user's open socket. This can be done by requiring that the user stations
periodically "tickle" the server: every 30 seconds (for example) the user station sends a
dummy request to the server, which sends a dummy response. This lets each side of the
connection know that the other side is still "alive."

When the server detects that two intervals have gone by without a tickle request, it can
assume that the user station has crashed, and close that user's socket and throwaway
any accumulated state information.

The user station should use a vertical-blanking task to generate these tickle requests
asyncronously, rather than generating them within the GetNextEvent loop; this avoids
problems with long periods away from GetNextEvent (such as when a modal dialog
box is running). This task can look at the time that the last request was made of the
server, and if it's approaching the interval time, queue an asynchronous request to
tickle the server (it's important that any AppleTalk calls made from interrupt or completion
routines be asynchronous).

If a user station's request (including a tickle request) goes unanswered, the user station
should recover by looking for the server and reestablishing communications as shown
above (beginning with the call to NBPLookUp) .

More information about half-open connections can be found in the Printer Access
Protocol chapter of Inside LaserWriter, available from APDA.

Using the Connection

The user stations Dave and Bill have established communications with the server, each
on its own socket (note that the user stations have not had to open their own sockets, or
register names of their own, to do this-the names we're using are merely for
explanational convenience). They are also automatically tickling the server as
necessary .

Technical Note #20 page 3 of4 Data Servers on AppleTalk

Now the user stations make requests of the server as needed:

•The server checks to make sure that
no one else is using that database.

Bill opens a database.Bill: "I'd like to use the sales ATPRequest
figures for this year."

Server: "Ok, Bill." ATPResponse

Dave: "Hey, Server - I'm still here!" ATPRequest Dave notices that the interval time is
approaching, and makes a tickle
request.

Server: "Ok, Dave." ATPResponse

Bill: "Please print the figures ATPRequest
for January thru June."

Server: "Ok, Bill." ATPResponse

The server resets its "last time I heard
from Dave".

Bill asks for specific data.

The server does a database search
sorts the results, and prints them
on a locallmagewriter.

Dave: "I'd like to use the sales
figures for this year."

ATPRequest Dave opens a database.

The user stations continue making requests of the server, until each is finished. The type
of work being done by the server determines how long the conversation will last: since
the number of sockets openable by the server is limited, it may be desirable to structure
the requests in such a way that the average conversation is very short. It may also be
necessary to have a (NBP named) socket open on the user station, if the server needs to
communicate with the user on other than a request-response basis. Here is how our
example connections ended:

Server: "Sorry, Dave, I can't do that.
Bill is using that database."

Closing the Connection

ATPResponse The server finds that Bill is using that
data.

•
Dave: "Thank you, server, I'm done ATPRequest

now. You've been a big help."
Dave tells the server he's finished.

Server: "Ok, Dave. Bye now." ATPResponse
ATPCloseSkt

ATPCloseSkt

The server kisses Dave goodbye.
After the Response operation
completes, the server closes
the socket Dave was using. It also
notices that Bill hasn't sent a request
in more than two intervals, and closes
Bill's socket, too.

The user station can forget about the socket it was using on the server; if it needs to talk
with the server again, it starts at the NBPLookUp (just in case the server has moved, gone
down and come up, etc.).

•
Technical Note #20 page 4 of4 Data Servers on AppleTalk

Macintosh Technical Notes

• #21: QuickDraw's Internal Picture Definition

See also: QuickDraw
Color QuickDraw
Using Assembly Language
Technical Note #59-Pictures and Clip Regions

Written by:
Modified by:
Updated:

Ginger Jernigan
Rick Blair

April 24, 1985
November 15, 1986
March 1, 1988

•

This technical note describes the internal format of the QuickDraw picture
data structure. This revision corrects some errors in the opcode descriptions
and provides some examples.

This technical note describes the internal definition of the QuickDraw picture. The
information given here only applies to QuickDraw picture format version 1.0 (which is
always created by Macintoshes without Color QuickDraw). Picture format version 2.0 is
documented in the Color QuickDraw chapter of Inside Macintosh. This information
should not be used to write your own picture bottleneck procedures; if we add new
objects to the picture definition, your program will not be able to operate on pictures
created using standard QuickDraw. Your program will not know the size of the new
objects and will, therefore, not be able to proceed past the new objects. (What this
ultimately means is that you can't process a new picture with an old bottleneck proc.)

Terms

An opcode is a number that DrawP ict ure uses to determine what object to draw or
what mode to change for subsequent drawing. The following list gives the opcode, the
name of the object (or mode), the associated data, and the total size of the opcode and
data. To better interpret the sizes, please refer to page 1-91 of the Using Assembly
Language chapter of Inside Macintosh. For types not described there, here is a quick
list:

•

opcode
mode
point
0..255
-128..127
rect
poly
region

byte
word
4 bytes
byte
signed byte
8 bytes
10+ bytes (starts with word size for poly (incl. size word)
10+ bytes (starts with word size for region (incl. size word)

Technical Note #21 page 1 of 6 QuickDraw's Internal Picture Definition

fixed point long
pattern 8 bytes
rowbytes word (always even)
bit data rowbytes * (bounds.bottom - bounds.top) bytes

Each picture definition begins with a picsize (word), then a picframe (rect), and •then the picture definition, which consists of a combination of the following opcodes:

OpeQde ~ Additional pata Total Size (bytes)

00 NOP nQne 1
01 elipRgn rgn 1+rgn
02 bkPat pattern 9
03 txf'ont tont (word) 3
04 txFaee face (byte) 2
05 txMQde mode (word) 3
06 spExtra extra (fixed polm) 5
07 pnSize pnSize (polnt) 5
08 pnMQde mode (word) 3
09 pnPat pattern 9
OA thePat pattern 9
OB ovSize point 5
OC oriqfn dh, dv (words) 5
OD txSize size (word) 3
OE fgCQIQr eQIQr (lonq) 5
OF bkCQIQr eQIQr (IQng) 5

10 txRatiQ numer (point), denorn (point) 9
11 plcverslon version (byte) 2 •20 line pnl.oc (polnt), newPt (point) 9
21 line from newPt (polnt) 5
22 short line pnl.oc (pomt): dh, dv (-128 ..127) 7
23 short line trorn dh, dv (-128 ..127) 3

28 IQng text txl.oc (point), count (0..255), text 6+text
29 DH text dh (0..255), count (0..255), text 3+text
2A DV text dv (0..255), count (0..255), text 3+text
2B DHDV text dh, dv (0..255), count (0..255), text 4+text

30 frameReet reet 9
31 paint Reet reet 9
32 erase Reet reet 9
33 invertReet reet 9
34 fillRect reet 9

38 frameSameReet reet 1
39 paintSameRect reet 1
3A eraseSameReet reet 1
3B invertSameReet reet 1
3C fillSameReet reet 1

40 frameRReet reet (ovalwidth, height; see 1, below) 9
41 paintRRect reet (ovalwidth, height; see 1, below) 9
42 eraseRReet reet (ovalwidth, height; see 1, below) 9 •

Technical Note #21 page 2 ot 6 QuiekDraw's Internal Picture Definition

Opcode (eont.) ~ Additional Data Total Size (bytes)

43 invertRReet reet (ovalwidth, height; see 1, below) 9

44 fillRReet reet (ovalwidth, height; see 1, below) 9

• 48 frameSameRReet reet 1

49 paintSameRReet reet 1

4A eraseSameRReet reet 1

48 invertSameRReet reet 1

4C fillSameRReet reet 1

50 frameOval reet 9

51 paintOval reet 9

52 eraseOval reet 9

53 invertOval reet 9

54 fillOval reet 9

58 frameSameOval reet 1

59 paintSameOval reet 1

5A eraseSameOval reet 1

58 invertSameOval reet 1
5C fillSameOval reet 1

60 frameAre rect, startAngle, areAngle 13
61 paintAre reet, startAngle, areAngle 13

62 eraseAre rect, startAngle, areAngle 13

63 invertAre reet, startAngle, areAngle 13
64 fillAre reet, startAngle, areAngle 13

• 68 frameSameAre startAngle, areAngle 5
69 paintSameAre startAngle, areAngle 5
6A eraseSameAre startAngle, areAngle 5
68 invertSameAre startAngle, areAngle 5
6C fillSameAre startAngle, areAngle 5

70 framePoly poly 1+poly
71 paint Poly poly 1-poly
72 erasePoly poly 1-poly
73 invertPoly poly 1-poly
74 fill Poly poly 1+poly

78 frameSamePoly (not yet implemented-same as 70, etc.) 1
79 paintSamePoly (not yet implemented) 1
7A eraseSamePoly (not yet implemented) 1
78 invertSamePoly (not yet implemented) 1
7C fillSamePoly (not yet implemented) 1

80 frameRgn rgn 1+rgn
81 paintRgn rgn 1+rgn
82 eraseRgn rgn 1+rgn

83 invertRgn rgn 1+rgn
84 fillRgn rgn 1+rgn

88 frameSameRgn (not yet implemented-same as 80, etc.) 1

• 89 paintSameRgn (not yet implemented) 1
8A eraseSameRgn (not yet implemented) 1
88 invertSameRgn (not yet implemented) 1

Technical Note #21 page 3 of 6 QuiekDraw's Internal Picture Definition

Opcode (cont.) Name Additional Data TotalSize (bytes)

8C fillSameRgn (not yet implemented) 1
90 BitsRect rowBytes, bounds. srcRect. dstRect. mode, 29+unpacked

unpacked bitData bitData •91 BitsRgn rowBytes, bounds, srcRect, dstRect. mode, 29+rgn+
maskRgn, unpacked bitData bitData

98 PackBitsRect rowBytes, bounds, srcRect, dstRect, mode, 29+packed
packed bitData for each row bitData

99 PackBitsRgn rowBytes, bounds, srcRect, dstRect, mode. 29+rgn+
maskRgn, packed bitData for each row packed bitData

AO shortComment kind(word) 3
A1 long Comment kind(word), size(word), data s-oata

FF EndOfPicture none 1

Notes

Rounded-corner rectangles use the setting of the ovSize point (see opcode $08,
above).

OpenP icture and DrawP icture set up a default set of port characteristics when they
start. When drawing occurs, if the user's settings don't match the defaults, mode
opcodes are generated. This is why there is usually a cl ipRgn code after the
picVersion: the default clip region is an empty rectangle.

The only savings that the "same" opcodes achieve under the current implementation is •
for rectangles. DrawPicture keeps track of the last rectangle used and if a "same"
opcode is encountered that requests a rectangle, the last rect. will be used (and no
rectangle will appear in the opcode's data).

This last section contains some Pascal program fragments that generate pictures. Each
section starts out with the picture itself (yes, they're dull) followed by the code to create
and draw it, and concludes with a commented hex dump of the picture.

{variables used in all examples}

VAR

err:
ph:
h:
r:
smallr:
orgr:
pstate:

OSErr;
PicHandle;
Handle;
Rect;
Rect;
Rect;
PenState; {are they in the Rose Bowl, or the state pen?}

•
Technical Note #21 page 4 of 6 QuickDraw's Internal Picture Definition

•

•

•

I. {Rounded-corner rectangle}
SetRect (r, 20, 10, 120, 175);
ClipRect(myWindowA.portRect);
ph := OpenPicture(r);
FrameRoundRect (r, 5, 4); {r,width,height}
ClosePicture;
Drawpicture(ph, r);

'PICT' (1) 0026 {size} OOOA 0014 OOAF 0078 {picFrame}
1101 {version 1} 01 OOOA 0000 0000 OOFA 0190 {clipRgn - 10 byte region}
OB 0004 0005 {ovSize point} 40 OOOA 0014 OOAF 0078 {frameRRect rectangle}
FF {fin}

II. {Overpainted arc}
GetPenState(pstate); {save}
SetRect(r, 20, 10, 120, 175);
ClipRect(myWindowA.portRect);
ph := OpenPicture(r);
PaintArc(r, 3, 45); {r,startangle,endangle}
PenPat (gray) ;
PenMode(patXor); {turn the black to gray}
PaintArc(r, 3, 45); {r,startangle,endangle}
ClosePicture;
SetPenState(pstate); {restore}
DrawPicture(ph, r);

data 'PICT' (2) 0036 {size} OOOA 0014 OOAF 0078 {picFrame}
1101 {version 1} 01 OOOA 0000 0000 OOFA 0190 IclipRgn - 10 byte region}
61 OOOA 0014 OOAF 0078 0003 002D {paintArc rectangle,startangle,endangle}
08 OOOA {pnMode patXor - note that the pnMode comes before the pnPat}
09 AA55 AA55 AA55 AA55 {pnPat gray}
69 0003 002D {paintSameArc startangle,endangle}
FF {fin}

Technical Note #21 page 5 of6 QuickDraw's Internal Picture Definition

III. {CopyBits nopack, norgn, nowoman, nocry}
GetPenState(pstate);
SetRect (r, 20, 10, 120, 175);
SetRect(smallr, 20, 10, 25, 15);
SetRect(orgr, 0, 0, 30, 20);
ClipRect(myWindowA.portRect);
ph := OpenPicture(r);
PaintRect(r);
CopyBits (myWindowA.portBits, myWindowA.portBits,

smallr, orgr, notSrcXor, NIL);
{note: result BitMap is 8 bits wide instead of the 5 specified by smallr}
ClosePicture;
SetPenState(pstate); {restore the port's original pen state}
DrawPicture(ph, r);

data 'PICT' (3) 0048 {size} OOOA 0014 OOAF 0078 {picFrame}
1101 {version 1} 01 OOOA 0000 0000 OOFA 0190 {clipRgn - 10 byte region}
31 OOOA 0014 OOAF 0078 {paintRect rectangle}
90 0002 OOOA 0014 OOOF 001C {BitsRect rowbytes bounds (note that bounds is

wider than smallr) }
OOOA 0014 OOOF 0019 {srcRect}
0000 0000 0014 DOlE {dstRect}
00 06 {mode=notSrcXor}
0000 0000 0000 0000 0000 {5 rows of empty bitmap (we copied from a

still-blank window) }
FF {fin}

•

•

•
Technical Note #21 page 6 of 6 QuickDraw's Internal Picture Definition

Macintosh Technical Notes

• #22: TEScroll Bug

See also: TextEdit
Technical Note #131-TextEdit Bugs

Written by:
Updated:

Bryan Stearns April 21, 1986
March 1, 1988

A bug in TextEdit causes the following problem: a call to TEScroll with no horizontal or
vertical displacement (that is, both dh and dv set to zero) results in disappearance of the
insertion point. Since such calls do nothing, they should be avoided:

IF (dh <> 0) OR (dv <> 0) THEN TEScroll(dh,dv,myTEHandle);

•

•
Technical Note #22 page 1 of 1 TESCroll Bug

•

•

•

Macintosh Technical Notes

• #23: Life With FonVDA Mover-Desk Accessories

See also: The Resource Manager
Technical Note #6-Shortcut for Owned Resources

Written by:
Updated:

Ginger Jernigan April 25, 1985
March 1, 1988

•

•

This technical note describes how to make sure that your desk accessory will
work after being moved by FonVDesk Accessory Mover.

If you want your desk accessory to work properly after being moved by the Font/DA
Mover, there are some eccentricities that you need to be aware of. When the FontiDA
Mover moves a desk accessory, it renumbers to avoid conflicts in 10 numbers. It will also
renumber all of your desk accessory's owned resources. See the Resource Manager
chapter of Inside Macintosh for more information on owned resources.

Since these owned resources are renumbered, your code will need to calculate the
resource 10 of any owned resource it uses. For example, if your desk accessory has an
owned 'DlOG' resource, and calls GetNewD ia log with the 10 you assigned to it
originally, the Resource Manager will not find it. The solution is that every time your desk
accessory references an owned resource, it must figure out (at execution time) the 10 of
the resource according to the current driver resource 10.

When the Font/DA Mover renumbers, it does its best to keep resources pointing to each
other properly. This means that it tries to renumber resource IDs embedded in other
resources as well as the resources themselves. For example, the reference to a 'DITl'
within a 'DlOG' or 'AlRI' resource gets changed automatically. FontiDA Mover knows
about the standard embedded resource IDs in most of the standard resources, but if you
define your own, the Font/DA Mover won't be able to renumber them for you. The
embedded resource IDs which the FontiDA Mover knows about are listed below.

Note that certain resources can never be owned, because their resource IDs are
restricted to a certain range. One such example is a WDEF. Since the 10 of a WDEF is
specified along with a four bit variation code, the range of WDEF IDs that can be used is
0-16363. Since none of this falls within the owned resource 10 range, WDEFs cannot be
owned. For the same reason, MDEFs, CDEFs, and MBDFs can't be owned either.

As a rule of thumb, before you ship a desk accessory, move it to a disk with another desk
accessory of the same 10. This will cause the Font/DA Mover to renumber your desk
accessory. If the moved copy doesn't work, then there is probably something wrong with
the way you are handling your owned resources.

Technical Note #23 page 1 of 2 Life With Font/DA Mover

Embedded resources known by Font/DA Mover

These are all true for FontiDA Mover 3.3 and newer:

• references to 'DITL' resources in 'DLOG'/'ALRT' resources •
• references to 'ICON', 'PICT', 'CTRL' in 'DITL' resources
• references to 'MENU' resources inside the resources themselves (menulD field)
• references to 'MENU' resources in 'MBAR' resources

Anything not on this list has to be fixed by the desk accessory.

By the way...

Before Font/DA Mover, desk accessories could have an 10 in the range 12 to 31. Now,
and in the future, desk accessories can only have IDs in the range 12 to 26, because
Font/DA Mover will only assign numbers in this range. Numbers 27 thru 31 are reserved.

•

•
Technical Note #23 page 2 of 2 Life With Font/DA Mover

Macintosh Technical Notes

• #24: Available Volumes

See also:

Written by:
Modified by:
Updated:

The File Manager

Bryan Stearns
Bryan Stearns

April 26, 1985
October 15, 1985
March 1, 1988

Standard File lets the user select one file from any available volume; it is
sometimes necessary for an application to find which volumes are present.
This technical note gives the proper method of accomplishing this.

There is a little-noticed feature of the low-level file manager call PBHGetVInfo which
allows specification of a "volume index" to select the volume. This volume index selects
the nth volume in the VCB queue. The following function uses PBHGet VInfo to find out
about a given volume. In MPW Pascal:

•
FUNCTION GetIndVolume(whichVol: INTEGER; VAR volName: Str255;

VAR volRefNum: INTEGER): OSErr;

{Return the name and vRefNum of volume specified by whichVol.}

VAR
volPB HParamBlockRec;
error OSErr;

{makes it easier to fill in!}
{make sure it returns the name}
{O means use ioVolIndex}
{use this to determine the volume}

BEGIN
.= @volName;
.= 0;
.= whichVol;

BEGIN
WITH volPB DO

ioNamePtr
ioVRefNum
ioVolIndex

END; {with}
error ;= PBHGetVInfo(@volPB,false); {do it}
IF error = noErr THEN BEGIN {if no error occurred}

volRefNum ;= volPB.ioVRefNum; {return the volume reference}
END; {if no error}
{other information is available from this record; see the FILE}
{Manager's description of PBHGetVInfo for more details ... }
GetIndVolume .= error; {return error code}

END;

•
Technical Note #24 page 1 of2 Available Volumes

In MPWC:

OSErr
short
char
short

GetIndVolume(whichVol,volName,volRefNum)
int whichVol;
*volName;
int *volRefNum;

/*Return the name and vRefNum of volume specified by whichVol.*/

•
HVolumeParam
OSErr

volPB;
error;

volPB.ioNameptr = volName; /*make sure it returns the name*/
volPB.ioVRefNum = 0; /*0 means use ioVolIndex*/
volPB.ioVolIndex = whichVol; /*use this to determine the volume*/

error = PBHGetVInfo(&volPB,false); /*do it*/
if (error == noErr) /*if no error occurred */

*volRefNum = volPB.ioVRefNum; /*return the volume reference*/

/*other information is available from this record; see the FILE*/
/*Manager's description of PBHGetVInfo for more details ... */

To find out about all volumes on-line, you can call this routine several times, starting at
whichVol := 1 and incrementing whichVol until the routine returns nsvErr.

return(error);
} /* GetIndVolume */

Technical Note #24

/*always return error code*/

page 2 of2 Available Volumes

•

•

Macintosh Technical Notes

• #25: Don't Depend on Register A5 Within Trap Patches

See also:

Written by:
Updated:

The Operating System Utilities

Bryan Stearns June 25, 1986
March 1, 1988

•

•

Future software may allow desk accessories to have their own globals by
changing register AS when the accessory is entered and exited. This can
cause problems for applications that patch traps without following certain
rules.

If your application patches any traps, it's important that the patches not depend on
register AS. This is because you may have intercepted a trap used by a desk accessory.

If you need access to your globals within your patch, you can save AS (on the stack,
perhaps), load AS from the low-memory global CurrentAS (this is guaranteed to be
correct for your application), do whatever you have to do within your patch, then restore
AS on the way out. Note that if you make any traps within your patch (or call the "real"
version of the routine you patched), you should restore the caller's AS before doing so.

There are several ways of depending on AS within a patch that you should watch out for:

• Are you making any references to your global variables, or those of any units
that you're using, such as thePort from QuickDraw? These are accessed
with As-relative references with negative offsets.

• Are you making any inter-segment subroutine calls? These are accessed
with As-relative references with positive offsets.

• Are you using any system calls (either traps or "glue" routines) which will
depend on AS during their execution? In this case, you need to be sure that
you restore the caller's AS before executing the call.

To be safest, patched traps should follow the same rules as interrupt handlers.

Note

In general, applications should not have to patch any traps, and risk compatibility
problems if they do! If you'd like help in removing your dependence on patching, please
contact Macintosh Developer Technical Support.

Technical Note #25 page 1 of 1 Register A5 Within Trap Patches

•

•

•

•
Macintosh
Technical Notes

Developer Technical Support

#26: Fond of FONDs
Written by: Joseph Maurer May 1992

•

•

This Technical Note takes the place of Tech Note #26, "Character vs. String Operations in
QuickDraw" by Bryan Stearns (March 1988), which pointed out the possible differences between
the results of a St r ingWidth call and successive calls to CharWidth. This Note updates and
brings into a broader context the issues related to text measuring. It also provides additional
documentation on font family resources (I FOND'S), and addresses various other frequently asked
questions related to the Font Manager. For reasons of consistency and easier reference, much of
the contents of Technical Notes #191, "Font Names," #198, "Font/DA Mover, Styled Fonts, and
'NFNT' s," and #245, "Font Family Numbers," have been updated and worked into this Note as
well.

Introduction

Every Macintosh developer needs to draw text in a GrafPort, and to specify typeface, size, and
style. In most cases, there are no problems, and application developers don't need to have in-depth
knowledge of the Font Manager's inner workings and the data structures involved. Sometimes,
however, the results on the screen or on printed output may be different from what you expected.
Then, usually, DTS comes into play to figure out what the problem is and how to fix it. This Note
is based on sharp developer questions from the last year or so, which point mainly at shortcomings
of the existing Font Manager architecture, inconsistencies in its data structures, and missing details
in the documentation.

We'll start with a historical overview, which discusses the introduction of font family description
resources (' FOND'S) back in 1986, explains the consequences of non-proportionally scaling
fonts, and covers non-registration and volatility of font family numbers.

We will then deal with the Font/DA Mover and the built-in "Mover" of the Finder in System 7. We
discuss a number of not-so-well-known aspects of moving fonts in and out of a suitcase file, and
recommend that you altogether abandon the resource type I FONT' . We'll also comment on font
names, and show you how to put separate stylistic variants of a typeface together into one font
family. And we provide documentation on the ffVersion field of a 'FOND' (accompanied by a
disclaimer and another piece of irritating information).

The main body of this Note addresses how the Font Manager works in the FMSwapFont context,
and gives information on the scaling factors in the FMOutput structure and on the changes
introduced by TrueType. We again took the examples of unexpected behavior (under certain
circumstances) from developer questions. Thanks for helping document this!

Determining the width of text, as required for line layout, is sometimes trickier than you might
think. We will document the effects of SetFractEnable in more detail and mention some more
line layout problems.

#26: Fond of FONDs 1 of 12

Macintosh Technical Notes

Finally, this Note includes sample code that puts the OutlineMetrics call to work, and
determines text bounding boxes for bitmap fonts.

Some FOND Background

Originally (Inside Macintosh Volume I, Chapter 7), all font-related data was contained in resources
of type 'FONT'. For a font number within the range 0....255, and a font size restricted to less
than 128, the (unnamed) 'FONT' resource with an ID:

128*(font number) + (font size)

contained the bitmap font strike, while the 'FONT' resource with ill = 128*(font number),
corresponding to font size 0, did not contain any data, but its resource name provided the font
family name. QuickDraw took care of stylistic variants like italic, bold, shadow, and so on; if a
user had a specifically fine-tuned font strike for a stylistic variant, QuickDraw would not
automatically substitute it when drawing text.

•

For aesthetic reasons, bitmap fonts for different sizes were usually designed with widths non­
proportional to the point size. For example, the text "Show the difference in text widths" drawn
with Courier 9 measures 170 pixels, whereas the same text drawn with Courier 18 measures 374
pixels, which is 10% more than you expect. (By the way, this is bad news for the ImageWriter
printer driver. When "Best" mode (144 dpi) is selected and text in Courier 9 is to be printed, the
printer driver uses Courier 18 to render the 9-point font size on the paper at twice the screen
resolution, and obviously has big trouble compensating for the 10% difference in text width.)

On the other hand, given that only integer character widths (in QuickDraw's 72 dpi units) are
possible, proportional font scaling is compromised anyway. Accumulated rounding errors in text •
measuring, particularly for scaled fonts, contribute to the headaches of many Macintosh
programmers. The computed text widths (vital for positioning text precisely and for line layout
algorithms to justify text) sometimes change quite abruptly when the user removes or adds certain
font sizes.

The introduction of the LaserWriter, and the success of Macintosh in the desktop publishing arena,
required an extension of the original Font Manager architecture. This extension is based on the
concept of "font family description" resources of type 'FOND', and on a new resource type
'NFNT' for the data of the existing 'FONT' resources (see Inside Macintosh Volume IV, Chapter
5).

The' FOND' resource stores size-independent information about the font family, and its resource
ID is the font number (in the range 0...32767). The resource name of the 'FOND' is the font
name, and it contains a variable-length font association table, which references the font strikes
belonging to a specific font family. These references include size, style, and resource ID of the
, NFNT' or 'FONT' resource containing the bitmap font data. TrueType fonts were retrofitted into
this scheme, and are identified as font strike resources for point size zero. Any reference to point
size zero refers to a resource of type's f nt' .

Note: The range 0...32767 for font numbers is subdivided into ranges for the various
script systems (see Inside Macintosh Volume VI, pages 13-8 and 14-22, and
Technical Note #242, "Fonts and the Script Manager"). This restricts the range of
font numbers for the Roman script to 0...16383, with 0, 1, and 16383 reserved for
the system. •

2 of 12 #26: Fond of FONDs

Since Apple originally intended fonts to be referenced by their font family numbers,
DTS attempted to register those numbers (see Inside Macintosh Volume I, page 219
and Volume IV, page 31). This failed-not only because the number of fonts
registered grew greater than the number of font family numbers available, but also
because the Font/DA Mover (version 3.8, shipped with System 6), and the
"Mover" built into the System 7 Finder resolve conflicts between font IDs (which
happened anyway!) by renumbering the fonts on-the-fly. There is no font ID
registration any more--except for the very special case of Japanese Kanji 'FOND I_

I fb it' IDs, and potentially for Korean, Chinese and other double-byte fonts.

As early as April 1988, Technical Note #191, "Font Names," recommended the use
of font names rather than font family numbers. Since then, the recommendation
has been reinforced in Inside Macintosh Volume VI, page 12-16. Fortunately, most
applications have been good about following this recommendation. Unfortunately,
some exceptions remain, even in Apple's own software. QuickDraw Pictures
created without 32-Bit QuickDraw refer to fonts by font family number only!

•
Developer Technical Support May 1992

•

•

For obvious reasons of upward compatibility (to maintain existing fonts, and to avoid reflowing of
existing documents), the introduction of 'FOND's did not solve all the problems. This is what this
Note is all about.

Moofing Fonts

The Font/DA Mover utility has evolved into version 4.1, which knows about' sfnt 's. It is
available on the Developer CD Series disc, path "Tools & Apps (Moof!): Misc. Utilities:". The
Finder in System 7 incorporates its own "Mover" (see Inside Macintosh Volume VI, page 9-33),
which makes the Font/DA Mover redundant for System 7 users.

Given the combinatorial explosion of all imaginable situations with 'FOND's, I FONT's,
'NFNT I sand' sfnt "s, and stylistic variations of fonts belonging to the same family, the font
moving job deserves respect. The following notes cover some less well-known aspects of this
business.

• If an old "standalone" I FONT' (without corresponding 'FOND' resource) is moved into a
suitcase file, Font/DA Mover or the System 7 Mover creates a minimal' FOND' resource on­
the-fly. This' FOND' has no tables, and nearly all its fields are zeroed. The System 7 Finder
also converts the resource type from' FONT I to 'NFNT'; unfortunately, the Font/DA Mover
keeps the resource type 'FONT'.

Note: While it is perfectly legal to have' FOND's continue to reference the older
, FONT' type, DTS recommends that you avoid 'FONT's. Accessing
'FONT's is much slower, since the Font Manager always looks for' FOND's
and 'NFNT I s first. More importantly, I FONT's are troublemakers if an
application comes with its own font in its resource fork. Imagine an application
that includes a private I FOND I which references a 'FONT' in its resource
fork by resource ID. When the Font Manager wants to load the font resource, it
first looks for a resource of type 'NFNT' with this same resource ID. If there's
an 'NFNT' in the System file with the same resource ID, the Font Manager will
pick it instead of the' FONT I from the application's resource fork. This
happens more often than you'd like to think!

#26: Fond of FONDs 3 of 12

Macintosh Technical Notes

• Under the current font architecture, the font name is the resource name of the' FOND' resource •
(let's forget about 'FONT'S altogether), so the font name can be any Pascal string.
Unfortunately, this conflicts with the 31-character limitation of a file name when the System 7
Finder derives the file name of a movable font file (Inside Macintosh Volume VI, page 9-34)
from the font name. Some third-party fonts come with font names long enough to cause
trouble. You may also see this problem when trying to open a suitcase if the Finder can't
generate distinct names for all of the fonts in the suitcase; the Finder may say the suitcase is
"damaged" when it is not.

Note: Each TrueType 'sfnt' resource contains a Naming Table (see The
TrueI'ype?" Font Format Specification, APDATM M0825LljA) which provides
nearly unrestricted font naming capabilities, to accommodate the needs of font
manufacturers. A forthcoming Macintosh Technical Note on TrueType Naming
Tables gives additional information.

• QuickDraw and the current Font Manager have no provision for stylistic variants like "light,"
"medium," "demi," "book," "black," "heavy," "extra," "ultra," etc., used in the context of
professional typesetting. Therefore, each of these variants comes with a separate font family
resource. Probably for reasons of consistency, the "italic" variants have their own font family
resources as well. Unfortunately, unless each 'FOND' references both the "plain" and the
"italic" font strikes, QuickDraw will no longer know a customized italic font strike exists.

It is fairly easy, using System 7 and ResEdit, to merge two font families (named, for exmaple,
"myFont" and "myFont italic") into one. This way, QuickDraw will automatically use the pre­
designed italic font strike instead of creating one algorithmically. Follow these convenient
steps:

1. Make sure there is no resource ill conflict between the 'NFNT' sand's f nt's belonging
to both families.

2. Make sure the style bits for italic are set in the font association table of "myFont italic."
3. From ResEdit's File menu, "Get Info..." on the "myFont" 'FOND' resource. Write down

the resource ill of the "myFont" 'FOND'.
4. From ResEdit's File menu, "Get Info ..." on the "myFont italic" 'FOND'. Change its

resource ill to be identical to the one you wrote down in step 3. Change its resource name
to "myFont."

5. Use the Finder in System 7 to move the contents of the "myFont italic" suitcase into the
original "myFont" suitcase. It will merge all constituents into one font association table,
and thus enable transparent substitution of the right font for QuickDraw's italic style.

Version Numbers

The I FOND' structure (see Inside Macintosh Volume IV, page 45, "FamRec") contains a field
ffVersion, and inquiring minds naturally want to know more about it. Before anything else,
however, please read the following disclaimer:

Disclaimer: The Font Manager does not check version numbers in a 'FOND I, and we
recommend that you not rely on the (intentionally vague) statements below,
but rather analyze the data in the' FOND' independently.

•

•
4 of 12 #26: Fond of FONDs

Currently, values 0...3 may appear in the ffVersion field, with the following intended
interpretations:

Version 0: Usually indicates that the 'FOND' has been created on the fly by the Font/DA
Mover (or the System 7 Finder). But the 'FOND' for Palatino on the
distribution disks of System 7 is a counterexample.

Version 1: Obviously indicates the first version when 'FOND's came out (Inside
Macintosh Volume IV, page 36).

Version 2: Corresponds to the extension of the' FOND' format documented in Inside
Macintosh Volume V, page 185 (which does not mean that the I FOND'
actually contains a bounding box table).

Version 3: The' FOND I is supposed to contain a bounding box table.

•
Developer Technical Support May 1992

This brings up an annoying fact. All measurement values (referring to a hypothetical l-point font)
in the 'FOND' are in a I6-bit fixed-point format, with an integer part in the high-order 4 bits and a
fractional part in the low-order 12 bits. You would expect that negative values (like for
ffDescent, or in the kerning tables) are represented in the usual two's-complement format, such
that standard binary arithmetic applies. This is mostly true, but not always. Again, Palatino is a
counterexample (and probably not the only one). To our knowledge, version 0 and version 1
, FOND'S have negative values represented in a format where the most significant bit is the sign
bit, and the rest represents the absolute value. However, there is nothing in the system software
that enforces this, so counterexamples may exist.

FUNCTION Check4p12Value(n: Integer): Integer;
{ n is a 4.12 fixed-point value; i.e., its "real" value is n/4096.
{ If n is "unreasonably negative," interpret the most significant bit
{ as sign bit, and convert to the usual two's complement format.•

Warning: Don't rely on the version number, but include sanity checks for the negative
values in a 'FOND' instead! The following Pascal function shows how
this can be done:

•

BEGIN
IF n < $8FFF THEN { means: (4 .12-interpretation of n) is below - 7 }

Check4p12Value := - BitAnd(n,$7FFF)
{ i.e., mask sign bit, and take negative of absolute value}

ELSE
Check4p12Value := n;

END;

In the Heart of the Font Manager

Swapping Fonts

As stated in Inside Macintosh, there is only one contact between QuickDraw and the Font Manager:
the FMSwapFont function. Each of the three QuickDraw text measuring functions
(CharWidth, StringWidth and TextWidth) always ends up in the QuickDraw bottleneck
procedure QDProcs. txMeasProc. Each of the three QuickDraw text drawing procedures
(DrawChar, DrawString and DrawText) always ends up in the QDProcs. textProc
bottleneck procedure. Any reasonable textProc (like StdText) needs to call the currently­
installed text measuring bottleneck procedure before actually rendering the text. And what does
any reasonable text measuring bottleneck procedure (like StdTxMeas) do first, before anything

#26: Fond of FONDs 5 of 12

Macintosh Technical Notes

else? It calls FMSwapFont, to make sure we are talking about the right font and its properties!
(To be precise, Get Font Info and FontMetr ics are the other calls that make sure the right •
font is swapped in and set up, without requiring you to call FMSwapFont explicitly.)

Responding to a font request is a lot of work, and FMSwapFont has been optimized to return as
quickly as possible if the request is the same as the previous one. Building the global width
table (see Inside Macintosh Volume IV, page 41) is among the more time-consuming tasks related
to FMSwapFont; this is why the Font Manager maintains a cache of up to 12 width tables.

Inside Macintosh Volume I, page 220 documents the Font Manager's choice when a font of the
requested size is not available. However, some consequences or additional features have
occasionally been a surprise to developers (and users as well).

Scaling Factors in FMOutPut and StdTxMeas

Let's suppose you have only a 12-point bitmap version of Palatino, and don't have any Palatino
outline fonts. When you request Palatino 18, QuickDraw sets up the FMInput record with
size = 18 and numer = denom = Point ($00010001) .On return, the FMOutput
record contains the handle to the font record to use (the 'NFNT' with the Palatino 12 bitmap font
strike), and indicates the scaling factors QuickDraw will have to use to produce the desired text
point size in FMOutput. numer and FMOutput. denom. In this example, that ratio is 3/2.

Note that these are also the values returned in StdTxMeas (Inside Macintosh Volume I, page
199) if you call the procedure with numer = denom = Point ($00010001). Why?
Because StdTxMeas calls FMSwapFont, as explained under "Swapping Fonts." StdTxMeas
does not apply these scaling factors to the text it measures. In our example, it would measure
Palatino 12 and return numer and denom in the ratio 3/2 to tell you that your application must •
multiply the results by these values to get the correct measurements for Palatino 18. This has
surprised more than one programmer who didn't expect numer and denom to change!

By the way, the Font Manager always normalizes the scaling factors as fractions numer/denom
such that the denominator is equal to 256. In our example, the real numbers returned by
FMSwapFont or StdTxMeas are numer = 384 and denom = 256.

Warning: If the scaling factors numer and denom passed to
StdTxMeas, StdText (see Inside Macintosh Volume I, pages
198 and 199), or in the FMInput record to FMSwapFont are
such that t xS i z e *n ume r . v / denom. v is less than 0.5 and
rounds to 0, and if there is more than one's f nt' resource
referenced in the font association table, then the current Font
Manager may get confused and return results for the wrong font
strike.

TrueType Always Has the Right Size

The default value of out 1 ineP re fer red is FALSE. If you have bitmap fonts for Palatino 12
and Palatino 14 in your system as well as a Palatino TrueType font, then requests for Palatino 12
or Palatino 14 are fulfilled with the bitmap fonts, but requests for any other size are fulfilled with
the TrueType font. In particular, if you (or, for example, a printer driver) need Palatino 12 scaled
by 2, the Font Manager will actually look for Palatino 24 and return the outline font, regardless of
the setting of outlinePreferred. Even if you wanted the bitmap font doubled for exact •

6 of 12 #26: Fond of FONDs

"what-you-see-is-what-you-get" text placement, you're out of luck-you get the TrueType font,
which may have very different font metrics or character shapes .

If the Font Manager uses an outline font to fulfill a given font request, the IsOutline function
returns TRUE. Interestingly, this does not imply that RealFont returns TRUE as well. If the
text size is smaller than the value lowestRecPPEM ("smallest readable size in pixels") in the
'head I font header in the TrueType font (see The TrueType Font Format Specification, version
1.0, page 227), then RealFont returns FALSE!

First Size, Then Style-or: To Be or Not to Be Outline

•
Developer Technical SupPOrt May 1992

•

•

When the Font Manager walks the font association table of a 'FOND' to look for a font strike of a
specified size and style, it stops at the first font of the right size. Only if you requested a stylistic
variant (like bold or italic) does it take a closer look at the fonts of the same size. It does this by
putting weights on the various style bits (for example, 8 for italic, 4 for bold, 3 for outline) and
choosing the font strike whose style weight most closely matches the weight of the requested style.
All this is fine when only bitmap fonts are available. With the presence of TrueType outlines,
however, the results are not always as expected, depending on the font configuration installed.

Let's look at a few examples:

Example 1: Let's suppose you have the bitmap font Times 12 (Normal) and the
TrueType fonts Times (Normal), Times Italic and Times Bold in your
system. If you request Times 14 Italic or Times 14 Bold, it's rendered from
the Times Italic or Times Bold TrueType fonts. However, if you ask for
Times 12 Italic or Times 12 Bold, and your system has the default setting of
outlinePreferred = FALSE, the Font Manager decides to take the
Times 12 bitmap and let QuickDraw algorithmically slant it (for italics) or
smear it (for bold).

Example 2: Let's suppose you want to draw big, bold Helvetica characters and there are
no existing bitmaps for the size you want. If the Helvetica Bold TrueType
outlines are available, the Font Manager chooses them and the only surprise
in text rendering will be a pleasant one. If there is no Helvetica Bold
TrueType font, however (like in the machine of your customer, who kept
only the normal Helvetica TrueType font in his system), then the characters
are rendered using the normal Helvetica outlines and, in a second step,
QuickDraw applies its horizontal l-pixel "smearing" to simulate the bold
stylistic variant. The result is very different (and rather an unpleasant
surprise).

Example 3: Admittedly, this is less likely (but it has happened). Let's suppose
somebody decides to rip the Times TrueType outline out of the System file
(don't ask me why-I don't know). He forgets to take the Times Italic
TrueType outline away as well. The next time he draws text in Times
(Normal), in a size for which there is no bitmap font (or if
outlinePreferred TRUE), the Font Manager goes for an
I sfnt', and the text shows up in italic (what a surprise!).

Unfortunately, given the current implementation of the Font Manager, there are no solutions to the
problems illustrated above-other than asking users of your application to install the fonts you
recommend. The only way to anticipate these potential surprises from within your application is to

#26: Fond of FONDs 7 of 12

Macintosh Technical Notes

look into the' FOND'S font association table. You can't depend on the IsOutline function
because it returns TRUE as soon as the Font Manager stops at an's fnt " in its first pass •
through the font association table-regardless of subsequent stylistic variations. This means, for
example, if you ask for Helvetica Bold and I sOut line returns TRUE, you don't know if you got
the Helvetica Bold TrueType font or if QuickDraw "smeared" the Helvetica (Plain) TrueType font.

Where Do the Widths Come From?

Text measuring (for example, for precise text placement in forms with bounding boxes) and most
line layout algorithms for justified text rely heavily on the character widths contained in the global
width table. Given that under the current font architecture, we may easily have three or more
different width tables for the same font specification (the non-proportional integer widths attached
to the 'NFNT', the fractional widths contained in the ' FOND' , and the fractional widths provided
by the 'sfnt'), it is important to understand where the widths come from in any case.

Since SetFractEnable was introduced (Inside Macintosh Volume N, page 32 and Volume
V, page 180), its setting TRUE or FALSE was supposed to give predictable effects. If it's
FALSE, the Font Manager takes the integer widths from the 'NFNT'; if it's TRUE, it takes the
fractional widths from the 'FOND'. Unfortunately, there are some additional details and side
effects that are not well known.

• The Font Manager looks at bit 14 of the ffFlags field in the 'FOND' (see Inside Macintosh
Volume IV pages 36 and 37). If it is set (like it is for Courier), the fractional widths from the
, FOND' are never used.

• If SetFractEnable is TRUE and you request a stylistic variation like bold or italic, the Font
Manager looks at bits 12 and 13 of the ffFlags field to decide how different widths or extra •
widths for the stylistic variants have to be used. What it decides is documented in the "Font
Manager" chapter of Inside Macintosh Preview, located on the Developer CD Series discs.

• Given that it is not possible to set the pen to a fractional position, precise text positioning with
fractional widths enabled is always compromised because of (accumulated) rounding errors.

• QuickDraw distributes the accumulated rounding errors across characters within a string (instead
of adding it at the end of the drawn text). This results in poor text quality on the screen, and in
problems when calculating the position of the insertion point between characters.

• The LaserWriter driver watches what you pass to SetFractEnable. Passing TRUE to
SetFractEnable disables some of the LaserWriter driver's line layout features, assuming that the
programmer intends to control text placement manually. Explicitly passing FALSE to
SetFractEnable achieves different results than using the default value of FALSE-Font
Substitution behaves differently, for example. These effects are sometimes Not What You
Wanted.

• On non-32-Bit-QuickDraw systems, SetFractEnable is not recorded in pictures. This affects the
line layout of text reproduced through DrawPicture if the picture was created with fractional
widths enabled.

In systems with TrueType, quite naturally the widths always come from the' sfnt ' when the
Font Manager uses a TrueType font. If fractEnable is FALSE, hand-tuned integer character
widths for specific point sizes come from the' hdmx' table in the' sfnt '. If fractEnable is
FALSE and no 'hdmx' table is present or it contains no entries for the desired point size, the
fractional character widths from the' sfnt ' are rounded to integral values.

•
8 of 12 #26: Fond of FONDs

The routines SpaceExtra (Inside Macintosh Volume I, page 172) and CharExtra (Inside
Macintosh Volume V, page 77; available only in color GratPorts) are intended to help you draw
fully justified text. This works fine on the screen, but not all printer drivers are smart enough to
use these settings appropriately under all circumstances. In particular, if you pass TRUE to
SetFractEnable, or if you tum the LaserWriterdriver's line layout algorithm off (by means of
the picture comment LineLayoutOff; see Macintosh Technical Note #91), or if font
substitution is enabled and actually occurs, it is better not to rely on SpaceExtra and
CharExtra when printing fully justified text. Instead, keep the LaserWriter driver's line layout
adjustments off, and calculate the placement of your text (word by word, or even character by
character) yourself.

•
DeveloperTechnical Support

More Line Layout Problems

May 1992

Putting Text Into Boxes

TrueType fonts came to the Macintosh together with seven new Font Manager routines (as
documented in Inside Macintosh Volume VI, Chapter 12). The Out lineMetrics function is
certainly the most sophisticated of these, and sample code illustrating its usage may be helpful. The
following procedure DrawBoxedString assumes that the new outline calls (Inside Macintosh
Volume VI, Chapter 12) are available, and that IsOutline returns TRUE for the currentport
setting.

PROCEDURE DrawBoxedString(pt: Point; s: Str255);
{ Draw string s at pen position (pt.h, pt.v), and show each character's bounding box. }

VAR
advA: FixedPtr;
IsbA: FixedPtr;
bdsA: RectPtr;
err,i,yMin,yMax,leftEdge,temp: Integer;
numer,denom: Point;
advance,lsb: Fixed;
r: Rect;

• CONST
kOneOne

BEGIN
numer
denom

$00010001;

Point (kOneOne) ;
Point (kOneOne); { unless you want to draw with scaling factors

.... }

•

MoveTo(pt.h,pt.v) ;
DrawString(s);

This is for the pleasure of your eyes only - in practice, you would probably
first look at the metrics, and then decide where and how to draw the string!

advA '= FixedPtr{NewPtr(Length(s) * SizeOf{Fixed)));
IsbA := FixedPtr(NewPtr(Length(s) * SizeOf(Fixed)));
bdsA := RectPtr(NewPtr(Length(s) * SizeOf(Rect)));
{ Please, check for NIL pointers here! }
err := OutlineMetrics(Length(s),@s[lJ,numer,denom,yMax,yMin,advA,lsbA,

bdsA) ;
advance :~ 0;
FOR i := 1 TO Length(s) DO { for each character}

BEGIN
{ Add accumulated advanceWidth and leftSideBearing of current glyph }
{ horizontally to starting point. }
leftEdge := pt.h + Fix2Long(advance + IsbA~);

#26: Fondof FONDs 9 of 12

Macintosh Technical Notes

r : = bdsA A; { The bounding box rectangle is in TrueType coordinates. }
temp := r.bottom; { need to flip it "upside down" }
r.bottom := - r.top;
r.top := - temp;
OffsetRect(r,leftEdge,pt.v) ;
FrameRect(r); { This is the glyph's bounding box. }
advance := advance + advA A;

{ "Advance" is Fixed, to avoid accumulation of rounding errors. }
{ Now, bump pointers for next glyph. }
bdsA '= RectPtr(ord4(bdsA) + SizeOf(Rect));
advA '= FixedPtr(ord4(advA) + SizeOf(Fixed));
lsbA '= FixedPtr(ord4(lsbA) + SizeOf(Fixed));

END;
DisposPtr(Ptr(advA));
DisposPtr(Ptr(lsbA)) ;
DisposPtr(Ptr(bdsA));

END; { DrawBoxedString }

OutlineMetrics exists because many developers need pixel-precise information on placement
and bounding boxes, often on a character-by-character basis. Unfortunately, there is no similar
facility for text drawing with bitmap fonts. Worse, under certain circumstances, italicized or
shadowed (or both) bitmap fonts are sometimes poorly clipped, particularly for scaled sizes.
Cosmetic workarounds include adding a space character to strings drawn in italic. You might also
draw the text off-screen first (in order to determine the bounding box of the black pixels) and use
CopyBits to copy the text onto the screen-but using CopyBits for text is usually bad for
printing.

The existing documentation on the FMOutput and global width table structures (Inside Macintosh
Volume I, page 227 and Volume IV, page 41) suggests it's possible to devise a routine for
determining a fairly precise text bounding box for bitmap fonts. The procedure below,
Bi tmapTextBoundingBox, is a first attempt. It assumes that TrueType is unavailable, or that
the IsOutline call returned FALSE for the currentport settings. While the returned bounding
box is not always "tight," be careful before modifying the algorithm and shrinking the resulting
bounding box-bitmap fonts just don't contain enough precise information for an exact bounding
box, and different bitmap fonts and different sizes may require different adjustments.

PROCEDURE TextBoundingBox(s: Str255; numer,denom: Point; VAR box: Rect);

CONST
FMgrOutRec = $998; { FMOutRec starts here in low memory
tabFont = 1024;
{ global width table offset for font record handle, see 1M IV-41 }

•

•

TYPE
FontRecPtr AFontRec;

only for StdTxMeas; we'll use FontMetrics }
see Inside Macintosh, IV-32 }

VAR
hScale,vScale: Fixed;
err,intWidth,kernAdjust:
xy: Point;
info: FontInfo;
fm: FMetricRec;
fmOut: FMOutput;
h : Handle;

Integer;

BEGIN
intWidth := StdTxMeas(ord(s[0]),@s[1],numer,denom,info);
{ calls FMSwapFont and everything - }
{ StdTxMeas returns possibly modified scaling factors numer, denom }
hScale := FixRatio{numer.h,denom.h); •

10 of 12 #26: Fond of FONDs

•

•

Developer Technical Support

vScale :~ FixRatio(numer.v,denom.v);
{ These are the scaling factors QuickDraw uses
{ in "stretching" the available character bitmaps
fmOut := FMOutPtr(FMgrOutRec)A;
{ has been filled by the most recent FMSwapFont,
{ implicitly called by StdTxMeas }
SetRect(box,O, - info.ascent,intWidth,info.descent);
{ bounding box for unsealed plain text }
IF (italic IN thePortA.txFace) AND (fmOut.italic <> 0) THEN BEGIN
{ the following is heuristics ... }

box. right :~ box. right + (info.ascent + info.descent - 1) *
fmOut.italic DIV 16;

FontMetrics (fm);
HLock(fm.WTabHandle); { We'll point to global WidthTable.
h := Handle (LongPtr (ord4 (fm.WTabHandle A) + tabFont)A);
{ Be sure it's a handle to a 'NFNT' or 'FONT' ! }

kernAdjust := FontRecPtr(hA)A.kernMax;
OffsetRect(box, - kernAdjust,O);
HUnlock (fm.WTabHandle) ;

END;
IF (bold IN thePortA.txFace) AND (fmOut.bold <> 0) THEN

box. right :~ box. right + fmOut.bold - fmOut.extra;
IF (outline IN thePortA.txFace) THEN InsetRect(box, - 1, - 1);
IF (shadow IN thePortA.txFace) AND (fmOut.shadow <> 0) THEN BEGIN

IF fmOut.shadow > 3 THEN fmOut.shadow := 3;
box. right := box. right + fmOut.shadow;
box.bottom := box.bottom + fmOut.shadow;
InsetRect (box, - 1, - 1);

END;
(Now scale the box (more or less) as QuickDraw would do. }
{ Note that some of the adjustments are based on trial and error_
box.top := FixRound(FixMul(Long2Fix(box.top),vScale));
box.left := FixRound(FixMul(Long2Fix(box.left),hScale)) - 1;
box.bottom := FixRound(FixMul(Long2Fix(box.bottom),vScale)) + 1;
box.right :~ FixRound(FixMul(Long2Fix(box.right) ,hScale)) + 1;
GetPen(xy) ;
OffsetRect(box,xy.h,xy.v) ;

END;

Conclusion

May 1992

•

At the time when the original Font Manager architecture was designed, based on QuickDraw's
hard-coded 72 dpi resolution, nobody could anticipate that some years later, the Macintosh would
be used to tackle professional typesetting projects. Several advanced page layout applications
managed to work around the "built-in" limitations, at high development costs, and some
compatibility and performance problems. In many other cases, however, those limitations caused
questions to DTS and unsatisfying compromises. This Note can't do much more than explain the
state of affairs; the real solution to the problems must come from a redesigned foundation.
TrueType leads the way and already fulfills many of the requirements; everything else is getting
closer and closer.

#26: Fond of FONDs 11 of12

Macintosh Technical Notes

Further Reference:
• Inside Macintosh, Volume I, Chapter 7, The Font Manager •
• Inside Macintosh, Volume IV, Chapter 5, The Font Manager
• Inside Macintosh, Volume V, Chapter 9, The Font Manager
• Inside Macintosh, Volume VI, Chapter 12, The Font Manager
• New & Improved Inside Macintosh, Imaging: The Font Manager. Developer CD Series

disc, path Developer Essentials: Technical Docs: Inside Macintosh Preview
• Macintosh Technical Note #91, Picture Comments-The Real Deal
• Macintosh Technical Note #191, Font Names
• Macintosh Technical Note #242, Fonts and the Script Manager
• Macintosh Technical Note #245, Font Family Numbers
• Apple LaserWriter Reference, Chapter 2, Working With Fonts (Addison-Wesley, 1988)
• Adobe Technical Note #0091 (PostScript Developer Support Group), Macintosh FOND

Resources

PostScript and Adobe are registered trademarks of Adobe Systems Incorporated.
Helvetica and Palatino are registered trademarks of Linotype AG and/or its subsidiaries.

Velocio is not a trademark of the author.

•

•
12 of 12 #26: Fond of FONDs

•
Macintosh
Technical Notes

Developer Technical Support

#27: MacDraw's PICT File Format
Revised:
Written by: Ginger Jernigan

August 1989
August 1986

•

•

This Technical Note formerly described the PICT file format used by MacDraw® and the picture
comments the MacDraw used to communicate with the LaserWriter driver.
Changes since March 1988: Updated the CLARIS address.

This Note formerly discussed the PICT file format used by MacDraw, which is now published by
CLARIS. For information on MacDraw (its specific use of the PICT format) and other CLARIS
products, contact CLARIS at:

CLARIS Corporation
5201 Patrick Henry Drive
P.O. Box 58168
Santa Clara, CA 95052-8168

Technical Support
Telephone: (408) 727-9054
AppleLink: Claris.Tech

Customer Relations
Telephone: (408) 727-8227
AppleLink: Claris.CR

Inside Macintosh, Volume V-39, Color QuickDraw and Technical Note #21, QuickDraw's
Internal Picture Format, now document the PICT file format. Technical Note #91, Optimizing for
the LaserWriter-Picture Comments, now documents the picture comments which the LaserWriter
driver supports.

Further Reference:
• Inside Macintosh, Volume V-39, Color QuickDraw
• Technical Note #21, QuickDraw's Internal Picture Format
• Technical Note #91, Optimizing for the LaserWriter-Picture Comments

MacDraw is a registered trademark of CLARIS Corporation .

#27: MacDraw's PICf File Format 1 of 1

•

•

•

Macintosh Technical Notes

• #28: Finders and Foreign Drives

Written by:
Updated:

Ginger Jernigan May 7,1984
March 1, 1988

•

•

This technical note describes the differences in the way the 1.1 g, 4.1, 5.0 and
newer Finders communicate with foreign (non-Sony) disk drives.

Identifying Foreign Drives

Non-Sony disk drives can send an icon and a descriptive string to the Finder; this icon is
used on the desktop to represent the drive. The string is displayed in the "Get Info" box
for any object belonging to that disk. When the Finder notices a non-Sony drive in the
VCB queue, it will issue 1 or 2 control calls to the disk driver to get the icon and string.

Finder 1.1 g issues one control call to the driver with c s Code = 20 and the driver returns
the icon ID in csParam. This method has problems because the icon ID is tied to a
particular system file. So, if the Finder switch-launches to a different floppy, the foreign
disk's icon reverts to the Sony's.

Finders 4.1 and newer issue a newer control call and, if that fails, they issue the old
Control call. The new call has csCode = 21, and the driver should return a pointer in
csParam. The pointer points to an 'ICN#' followed by a 1 to 31 byte Pascal string
containing the descriptor. This implies that the icon and the string must be part of the
disk driver's code because only the existence of the driver indicates that the disk is
attached.

This has implications about the translation of the driver for overseas markets, but the
descriptor will usually be a trademarked name which isn't translated. However, the
driver install program could be made responsible for inserting the translated name into
the driver.

Drivers should respond to both control calls if compatibility with both Finders is desired.

Formatting Foreign Drives

When the user chooses the Erase Disk option in the Finder, a non-Sony driver needs to
know that this has happened so it can format the disk. Finder 4.1 and newer notify the
driver that the drive needs to be formatted and verified. They first issue a Control call to
the driver with the csCode = 6 to tell the disk driver to format the drive. Then they issue a
Control call with a csCode =5 to tell the driver to verify the drive.

Technical Note #28 page 1 of 2 Finders and Foreign Drives

Other Nifty Things to Know About

Finders 4.1 and newer also permit the user to drag any online disk to the trash can. The
Finder will clean up the disk state, issue an Eject call followed by an Unmount call to
the disk and then, an event loop later, reclaim all the memory. This means any •
program/accessory used to mount volumes should reconcile its private data, menus, etc.
to the current state of the VCB queue. These Finders also notice if a volume disappears
and will clean up safely. But, because of a quirk in timing, a mount manager cannot
unmount one volume then mount another immediately; it must wait for the Finder to loop
around and clean up the first disk before it notices the second. (It should have cleaned
up old ones before it notices new ones, but it doesn't.)

Finders 5.0 and newer allow you to drag the startup disk to the trash; Finder 4.1 just
ignored you. Finders 5.0 and newer take the volume offline as if you had chosen Eject.

•

•
Technical Note #28 page 2 of2 Finders and Foreign Drives

Macintosh Technical Notes

• #29: Resources Contained in the Desktop File

See also:

Written by:
Modified by:
Updated:

The Finder Interface

Ginger Jernigan
Ginger Jernigan

May 7,1985
December 2, 1985
March 1, 1988

•

This technical note describes the resources found in the Desktop file. Note:
Don't base anything critical on the format of the Desktop file. AppleShare
already uses another scheme; AppleShare volumes don't have Desktop files.
The format of this file can, and probably will, change in the future.

The Desktop file contains almost the same resources for both the Macintosh File System
(MFS) and the Hierarchical File System (HFS). This technical note describes the
resources found in both. This information is for reading only. This means your
application can read it but it should NEVER write out information of its own, because the
Finder, as well as Macintosh Developer Technical Support, won't like it.

The Desktop is a resource file which contains the folder information on an MFS volume,
the "Get Info" comments, the application bundles, 'FREF's and 'ICN#'s, and information
concerning the whereabouts of applications on an HFS disk. Everything except the
comments are preloaded when the desktop is opened, making it easier for the Finder to
find things.

The contents of the Desktop file are described below. The resource types are the same
for both MFS and HFS volumes unless otherwise stated.

'APPL': This resource type is used by the HFS to locate applications. This is
used by the Finder to locate the right application when a document is opened.
Each application is identified by the creator, the directory number, and the
application name. This is used only by HFS.

'BNDL': This resource type contains a copy of all of the bundles for all of the
applications that are either on the disk or are the creators of documents that are on
the disk. This is used by the Finder to find the right icons for documents and
applications. If you have a document whose creator the Finder has not seen yet, it
will not be in the Desktop file and the default document icon will be used.

•
'FREF': This contains a copy of all of the FREFs referenced in the bundles.

Technical Note #29 page 1 of 2 Resources Contained in the Desktop File

'FCMT': This resource contains all of the "Get Info" comments for
applications and documents. On MFS volumes the ID is a hash of the object's
name. The hashing algorithm is as follows:

FUNCTION HashString(str: Str255): INTEGER;

The 10 for the FCMT returned in function result •
HashString

MOVE.L (SP)+,AO
MOVE.L (SP)+,A1

MOVEQ #0,00
MOVE.B (A1)+,00

MOVEQ #0,D2
@2

get return address
get string pointer

get string length

accumulate 10 here

@1

MOVE.B
EOR.B
ROR.W
BMI.S
NEG.W

(A1) +,01
01,02
#1,02
@1
02

get next char
XOR in
stir things up
10 must be negative

SUBQ.W #1,00
BNE.S @2

MOVE 02, (SP)
JMP (AO)

loop until done
until end of string

return the hashed code

For HFS volumes, the ID of the resource is randomly generated using UniqueID. •
To find the ID of the comment for a file or directory call PBGetCatlnfo. The
comment ID for a file is kept in ioF1XFndrlnfo. fdComment. The comment ID for a
directory is kept in ioDrFndrlnfo. frComment.

'FOBJ': This resource type contains all of the folder information for an MFS
volume. The format of this resource is not available. This is only in an MFS
volume's Desktop file.

'ICN#': This resource type contains a copy of all of the 'ICN#' resources
referenced in the bundles and any others that may be present.

'STR ': This is a string that identifies the version of the Finder, but it isn't
always correct.

Creators: A resource with a type equal to the creator of each application with
a bundle is stored in the Desktop file for reference purposes only. The data stored
in these resources is for the Finder's use only.

Be aware that if a resource is copied from an application resource file and there is an ID
conflict, the Finder will renumber the resource in the Desktop file.

•
Technical Note #29 page 2 of 2 Resources Contained in the Desktop File

Macintosh Technical Notes

• #30: Font Height Tables

See Also:

Written by:
Updated:

The Font Manager
The Resource Manager

Gene Pope April 25, 1986
March 1, 1988

•

•

This technical note describes how the Font Manager (except in 64K ROMs)
calculates height tables for fonts and how you can force recalculation.

In order to expedite the processing of fonts, the Font Manager (in anything newer than
the 64K ROMs) calculates a height table for all of the characters in a font when the font is
first loaded into memory. This height table is then appended to the end of the font
resource in memory; if some program (such as a font editor) subsequently saves the
font, the height table will be saved with the font and will not have to be built again. This
is fine for most cases except, for example, when the tables really should be recalculated,
such as in a font editor when the ascent and/or descent have changed.

The following is an example of how to eliminate the height table from a font:

IF (BitAnd(hStrike AA.fontTyp,$l)=l) THEN BEGIN (We have a height table!
(Truncate the height table!
SetHandleSize(Handle(hStrike),GetHandleSize(Handle(hStrike)­

(2*(hStrike AA.lastChar-hStrike AA.firstChar)+3)));

(We no longer have a height table so set the flag to indicate that!
hStrikeAA.forrnat := BitAnd(hStrikeAA.fontType,$FFFFFFFE);

END;

In MPWC:

if «**hStrike) . font Type & Ox1 ==1) (/*We have a height table*/
/*Truncate the height table*/
SetHandleSize«Handle)hStrike,GetHandleSize«Handle)hStrike)-

(2* ((**hStrike) .1astChar- (**hStrike) . firstChar) +3)) ;
/*We no longer have a height table so set the flag to indicate that*/
(**hStrike) . font Type = (**hStrike) .fontType & OxFFFFFFFE;

where hStrike is a handle to the 'FONT' or 'NFNT' resource (handle to a FontRec).

Note: After the height table has been eliminated, the modified font should be saved to
disk (with ChangedResource and Wr i teResource) and purged from memory (using
ReleaseResource). This is an important step, because the Font Manager does not
expect other code to go behind its back removing height tables that it has calculated.

Technical Note #30 page 1 of 1 Font Height Tables

•

•

•

•
Macintosh
Technical Notes

REVIEW

#31A:

Developer Technical Support

GestaltWaitNextEvent
Revised by: C.K. Haun <TR> April 1 1992

•

This Technical Note discusses a new Event Manager call in Macintosh System Software.

The Changing World
The Macintosh operating environment is changing rapidly. Modular system software, dynamically
linked libraries, plug and play hardware, all add up to a confusing environment for the application
programmer.

To dispel this confusion, it is essential that an application always know what features are available
for its use. Th~lJeF[.erience will be greatlY:'J~nhanced when the user can drop a new system

extension into 211~rJpm~il¥1jjt1ii~F,~"I~i~jr,:~,tn:.~tl:~~i1fc,j:ons.
To allow thisii:1J1eWi::funci.§p~~{provi~jis ~r.iYstIP>:e*tens.fl.i~:~:5een added to System 7 and
later, Gest a1<,,~t ~1tJ.,EJ.'~'t~i"jjjj:?::::·· ~~:~t/' ~~~~jt)il:li~l ~rf t,jW::

The best way to explain GWNE is to see it in action. The function prototype for GWNE is:

pascal EventReturnStructHandle GestaltWaitNextEvent(EventMaskHandle
theMask, SleepHan.d.l.e....sleepvalue, GestaltAvaila:b...leHandle
featuresAvailabli~E;~a~ltAvailableHandlem±iIiLmNeeded,GWNECallbackHandle

r~:;;'~;'Ul~lle't~ is missing. No one could ever

There are six new structures defined for this call~jt'

The first is the EventReturnStruct. Since you never know what features may be connected to
your Mac, you can never be certain what events you'll get back. Also, it is possible to get multiple
events simultaneously, depending on the types of devices and extensions the user has installed So
this variable structure has been created to let you know what happened during the event call.

struct EventReturnStruct{
unsigned long
struct EventRecord2

} i

where EventRecord2 is:

NumberOfEventsi
**theEventsi

•
struct EventRecord2

unsigned long
Handle
DateTimeRec
EventRecord2

#31A: GestaltWaitNextEvent

typeOfEventi
eventDatai
eventTirnei
**nextEventi

1 of 5

Macintosh Technical Notes

} i

When GWNE returns, you will then walk through the linked list of EventRecord2 structures,
examining the event type and parsing the data in the eventData field as appropriate for that event.
The numberOfEvents parameter is available to quickly determine how many events have occurred.
Since it is possible for you to get up to 4294967295 events per GWNE call (or up to available
memory) it may be appropriate to display a watch cursor or 'please wait' dialog after returning
from GWNE.

•
Also please note that each event contains a DateTirneRec structure. Ticks are not enough for some
events, for example if the SubSpace manager (see develop issue 7) is installed, the normal starting
point of Jan I 1904 is not adequate, since events posted many millennia earlier or later may also be
queued to your machine. Please see the specific event source documentation for explanation of this
record for specific events.

The next new structure is the EventMaskStruct. This is necessary since there is a large amount
of possible events (again, up to 4294967295) that you may be interested in, and they may have
different masking needs.

struct EventMaskStruct{

i. ;;gEe:v::RcP:~fitPW
You'll note that you4ih" pass~reas61l:s:'~both,for acdijiti'ng;'6f."fefusing any event, the contents of
these handles is determined by the eventType field.

•
typeOfEventi
eventWakePararnetersi
eventStayAsleepPararnetersi
XOREventsi
ANDEventsi
OREventsi
NOTEventsi
**nextSleepi

Warning: You must pass a handle in both eventAcceptPararneters and
eventRefusePararneters. Failure to do so may cause an event not
intended formur'COOlputer to be accepted. ..:,:4""~k:

~~.gl~l~~b:~~~~ ~I.JiEfatl:e4~r:;'~e":;~~lin~~,(;~~
flexibility to customize y6b¥:applicationl:t6 meeHfie::reM':"n.s oftydbr customers.

tI:::"if?'
struct SleepStruct{

unsigned long
Handle
Handle
EventMaskHandle
EventMaskHandle
EventMaskHandle
EventMaskHandle
struct SleepStruct

} i

The new sleep structure gives you much finer control over what you wish to wake up for. Besides
passing the wake up parameters and stay sleeping parameters (the definition of these parameters is
determined by the event number) you also pass handles to the events that may relate to the event
you are concerned about.

For example, you pass a SleepStruct for a kMonitorMoved event that specifies that you should
only be awakened if the monitor moved more that 75 degrees vertically, but stay sleeping if the •
20f5 #31A: GestaltWaitNextEvent

move angle exceeds 90 degrees vertical. This may be all that is required, but you may also be
concerned about what caused that to happen. If you pass an event mask for a
kCatJumpedOnMontior as one of the ANDEvent parameters, then you will be wakened if the 75-90
tilt is the result of the kCatJumpedOnMontior. If there are some simultaneous events that you
don't care about, pass them in the NOTEvents. In this case, you may pass a kEarthQuakeEvent
mask with a value of kLessThanRichter4 . 0 as a parameter. This would indicate that you want to
be wakened ifmonitor moved more that 75 degrees vertically, but stay sleeping if the move angle
exceeds 75 degrees vertical and this was not caused by a small earthquake.

A few experiments will make this clear, and you'll be glad to have the control you have.

•
Developer Technical Support April 1992

The next new parameter is the GestaltAvailableHandle, this will return to you a list of current
system features. This will allow you to dispatch rapidly to the appropriate routine when the user
adds or deletes a system feature.

struct GestaltAvailable
Boolean
Boolean
FeatureStruct
Boolean
FeatureStruct

{

changed;
added;
**addedFeatures;
removed;
**removedFeatures;

•

}; ,... .'~(~:Itl*~
where FeatureS$ct.j§tW:·· ..~d~W~>:·1\l

:ill,r'llih ll~;::;::iW:'
struct Feat~:'freSti=n.ct{@;~~;: .:~

oST~i@L,. tf~t".:. ~ltt;:*~:::'

long
OSErr
struct FeatureStruct

} ;

'''%1% +b "§#' .d~lilit~:::fi\~

~ctt;;
response;
result;
**nextFeature;

:':-:::-:':':-::::::::::::~:'-:-:';"""" ..:o:~,*:::.;

The selector is seJl4!xplanatory. Response and :t:$!Jtt ..are included here, because GWNE will

;;;;Bl:ll:~:~::all~iS record specifies the

While we hope every application is rewri&tjllo take advantage of every possible system
configuration dynamically, we understand that there are some smaller shops where this will not be
possible for a few months after GWNE goes into general use. For example, there may be some
applications that will take a while to revise to continue working when the user removes QuickDraw
from the system.

If this is the case for your application, in this parameter all the features that you need to run in
minimumNeeded.

Note: Please do not abuse this feature. If your application is too picky and not
ready to handle many different configurations, it is possible for you to call GWNE
and never return. The user would be confused by this.

•
The [mal new structure is the GWNECallbackHandle

struct GWNECallbackHandle{
VoidProcPtr callBack;
FeatureStruct **featuresNeeded;

#31A: GestaltWaitNextEvent 30f5

Macintosh Technical Notes

short minimurnCallBackMinutes;
} ;

Because of the power of GWNE , it sometimes takes a longer time to complete than the older WNE
routine. If you would like to take some periodic action during a GWNE call, pass this structure.
GWNE will call your callBack proc when the amount of minutes specified in
minimumCallBackMinutes has elapsed if the feature set you defined in featuresNeeded is
available.

Cautionary Notes

Obviously GWNE is going to take a little more time than the older WaitNextEvent call. Also, GWNE
disables interrupts for the duration of the call to prevent new selectors and features from being
added while the call is in progress.

This should not be a problem for a well-behaved application, if you are checking Ticks instead of
incrementing a variable during interrupt time you will not be affected

•

Note: TickCount now returns minutes, not sixtieths of a second.

We have determined tb(;~:!!,;At.:J~piting applications may:::~?'perience difficulty blinking an insertion
point if the user has ~\ifealiliiiPany features installed?: We cannot fix this in current System
Software, but all new liitdw"· proj.eet:s,::wilbbe:::desigued witlua 'LCD Shutter' over the display,

~~:~~::Z~~e s~f~abWsorbYblinking the

Determining if GWNE is available

At this writing, GWNE is designed to be a system extension, and there are no plans to incorporate it
in core system software. 1ft¢;.'Oii\UPg it in the core softw .. :jld.Jimit its effectiveness.=r:::~~~~.d~4~#FB:rtUSI 0&1 GWNE 10 determine IT

II Prior to callin~~tl~F06opyWI1 RAM~~b'~is~*fo i¥fbw recovery if call fails
~I~:: ~:i~~~~~·

CopyMachineRAMToDisk () ; 1* your routine····:~:k')

II Install a bus error handler. This will point to the code immediatly after
I I the GWNE call

InstallMyBusError();

I I Call GWNE

myEvts=GestaltWaitNextEvent(myMaskHandle,mySleepHandle,returnedFeatureSet,mini
mumFeaturesNeeded,callBackHandle);

if (didBusError) {

•

II this flag will be set by your bus error handler. If it is set,then GWNE is
II not currently installed. Reload memory from disk

CopyDiskImageBackToRAM(); 1* your routine *1

40r5

CallWaitNextEvent(); II default to calling WNE

#31A: GestaltWaitNextEvent

•

NOTE: You cannot assume that GWNE will never be available if it was not available one time.
The user may install or remove it at any time, so you must write your event loop in this
fashion.•

Developer Technical Support April 1992

Conclusion:

GestaltWaitNextEvent answers the prayers of developers, and the needs of users. It gives a well
defined, consistent interface to a fluid environment.

Obviously, existing applications will need some rewriting to become fully GWNE aware. We
expect incorporation will take up to two weeks, and re-writing your code to be 'any feature aware'
may take slightly longer. However, it will be worth the effort.

Further Reference:
• Inside Macintosh, Volume VII-XXIII, Possible Event Codes References

•
'~llr]rli]'li::

/ .~~~t:::!!iil::~;""" ,.:.:.:'....,',...:;..,.:~:.::::::.:~..:..::~:.:~.:,.:.:~:...:[..:·.,.:~::.'..:~:.::~:.:··.i..,·:.f.::.:..:;.~.:;.::,'..:'.:.,:,.:.',:,,,.:;.~.·,~:::•..:.:.t:~.:i,l:;:;.,ilIII:..-, :;i!!lliilllt":,,.: ;.':':'. .

•

.,.:.

:s~.:.:.,::..:,.,:::::.,...:.,:,...::.:'.:.::.·..,:~.',.•::.r::.:..;..,:..:..:[,·:·..:i,;...,..f::'..:~.,:f.~.;:::.,::.:·.::.;:':~.::;.::i1.. '.!.'.i:·~.:~:I.t:r.•....•:.,':.:'.•:~::.':..::,..,::.:::....,..'..:·::'..::.'..,:.::.:::'.~,,:.i:,:.!:::,.,:.:,:.::j:':i,..::!.i;.f,~l: '"trW:;;:;4;1:!i:,:dW~:~~"Mi~!r
",i ..,e'l U

#31A: GestaltWaitNextEvent 5 of 5

•

•

•

Macintosh Technical Notes

• #32: Reserved Resource Types

See:

Written by:
Updated:

The Resource Manager

Scott Knaster May 13, 1985
March 1, 1988

Your applications and desk accessories can create their own resource types. To avoid
using type names which have been or will be used in the system, Apple has reserved all
resource type names which consist entirely of spaces ($20), lower-case letters ($61
through $7A), and "international" characters (greater than $7F).

In addition Apple has reserved a number of resource types which contain upper-case
letters and the "#" character. For a list of these resource types, see The Resource
Manager Chapter of Inside Macintosh (starting with Volume \I).

•

•
Technical Note #32 page 1 of 1 Reserved Resource Types

•

•

•

Macintosh Technical Notes

• #33: ImageWriter II Paper Motion

Written by:
Updated:

Ginger Jernigan April 30, 1986
March 1, 1988

The purpose of this technical note is to answer the many questions asked
about why the paper moves the way it does on the ImageWriter II.

Many people have asked why the paper is rolled backward at the beginning of a
Macintosh print job on the ImageWriter II. First, note that this only happens with pin-feed
paper (l.e, not with hand-feed or the sheet-feeder) and only at the beginning of a job.

It is not a bug, and it is not malicious programming. It is simply that users are told in the
manual to load pin-feed paper with the top edge at the pinch-rollers, making it easy to
rip off the printed page(s) without wrecking the paper that is still in the printer or having
to roll the paper up and down manually. At the end of every job, the software makes sure
that the paper is left in this position, leaving the print-head roughly an inch from the
edge. If something is to be printed higher than that, the paper has to be rolled
backwards.

• As you are probably aware, the "printable rectangle" (rPage) reported to the application
by the print code begins 1/2 inch from the top edge, not one inch. The reason for that is
that we want a document to print exactly the same way whether you are printing on the
ImageWriter I or II. On the ImageWriter I, the paper starts with the print-head 1/2 inch
from the top edge, so the top of rPage is at that position for both printers.

There is no way to eliminate the reverse-feed action, because the user would have to
load the paper a different way AND the software would have to know that this was done.

Incidentally, in addition to the paper motion described above, there is also the "burp."
This is a 1/8-inch motion back and forth to take up the slop in the printer's gear-train. It is
needed on the old-model printer, and there is debate about whether or not it's needed
on ALL ImageWriter lis, or only some, or none. The burp has been in and out of the
ImageWriter II code in various releases; right now it's in.

•
Technical Note #33 page 1 of 1 ImageWriter II Paper Motion

•

•

•

Macintosh Technical Notes

• #34: User Items in Dialogs

c

See also: Inside Macintosh, The Dialog Manager

Written by:
Updated:
Revised by:

Bryan Stearns

Jim Reekes

May 29,1985
March 1, 1988
October 1, 1988

The Dialog Manager does not go into detail about how to manage user
items in dialogs; this Technical Note describes the process.
Changes since March 1, 1988: Added MPW C 3.0 code, added a

SetPort call to the Pascal example, and noted the necessity and meaning
of enabled items.

To use a user Item with the Dialog Manager, you must define a dialog, load the dialog
and install your userItem, and respond to events which relate to your userItem. If
your application wants to receive mouse clicks in the userItem, then you must set the
item to enabled.

• Defining a Dialog Box with a userltem

You should define the dialog box in your resource file as follows. Note that it is
defined as invisible, since we have to play with the userItem before we can draw it.

resource 'DLOG' (1001) (
(100,100,300,400),
dBoxProc, invisible, noGoAway, OxO,
1001,
"Test Dialog"

) ;

resource 'DITL' (1001) {
{

(160, 190, 180, 280),
button (enabled, "OK");

(104, 144, 120, 296),
user Item (enabled)

) ;

/* type/ID for box */
/* rectangle for window */
/* note it is invisible */

/* matching item list */

/* rectangle for button */
/* an OK button */
/* rectangle for item */
/* a user item! */

•
Loading and Preparing to Show the Dialog Box

Before we can actually show the dialog box to the user, we need two support routines.
The Dialog Manager calls the first procedure whenever we need to draw our
userItem. You should install it (as shown below) after calling GetNewDialog but
before calling _ShowWindow. This first procedure simply draws the userItem.

Technical Note #34 page 1 of4 User Items in Dialogs

PROCEDURE MyDraw(theDialog: DialogPtr; theItem: INTEGER);

In MPW Pascal:

VAR
iType
iBox
iHdl

INTEGER;
Rect;
Handle;

(returned item type)
(returned bounds rectI
(returned item handle)

•
BEGIN

GetDItem(theDialog,theItem,iType,iHdl,iBox); (get the box)
FillRect(iBox,ltGray); (fill with light gray)
FrameRect(iBox); {frame it}

END; (MyDraw)

In MPWC3.0:

pascal void MyDraw{theDialog,theItem)
DialogPtr theDialog;
short int theItem;

short int
Rect
Handle

iType;
iBox;
iHdl;

/*returned item type*/
/*returned bounds rect*/
/*returned item handle*/

GetDItem(theDialog,theItem,&iType,&iHdl,&iBox); /*get the box*/
FillRect(&iBox,qd.ltGray); /*fill with light gray*/
FrameRect{&iBox); /*frame it*/

/*MyDraw*/

The other necessary procedure is a filter procedure (filterProc) that the Dialog
Manager calls whenever ModalDialog receives an event (this only applies when
calling ModalDialog; modeless dialogs are covered below). The default
filterProc looks for key-down and auto-key events and simulates pressing the OK
button (or whatever else is item 1) if the user has pressed either the Return key or the
Enter key. To support a userltem, the filterProc must handle events for any
userltem items in the dialog in addition to performing the default filterProc tasks.
The following short filterProc supports these types of items; when the user clicks in
the userltem, the filterProc inverts it.

•
In MPW Pascal:

FUNCTION MyFilter{theDialog: Dialogptr; VAR theEvent: EventRecord;
VAR itemHit: INTEGER): BOOLEAN;

CONST
enterKey 3;
returnKey 13;

VAR
(we'll play w/ mouse)
(for enter/return)
{returned boundsrect}
{returned item handle}
(returned item and type)

Point;
SignedByte;
Rect;
Handle;

itemHit : INTEGER;

mouseLoc
key
iBox
iHdl
iType,

BEGIN
SetPort(theDialog);
MyFilter := FALSE; {assume not our event}

•
Technical Note #34 page 2 of4 User Items inDialogs

(we handled it)
(he hit the userItem)
(if he hit our userItem)
(mousedown)
(event case)
(MyFilter)

•
CASE theEvent.what OF (which event?)

keyDown,autoKey: BEGIN (he hit a key)
key := SignedByte(event.message); (get keycode)
IF (key = enterKey) OR (key = returnKey) THEN BEGIN

MyFilter := TRUE; (we handled it)
itemHit '= 1; (he hit the 1st item)

END; (test CR or Enter)
END; (keydown)
mouseDown: BEGIN (he clicked)

mouseLoc := theEvent.where; (get the mouse pos'n)
GlobalToLocal(mouseLoc); (convert to local)
GetDItem(theDialog,2,iType,iHdl,iBox); (get our box)
IF PtInRect{mouseLoc,iBox) THEN BEGIN (he hit our item)

InvertRect(iBox);
MyFilter := TRUE;
itemHit '= 2;

END;
END;

END;
END;

In MPWC3.0:

pascal Boolean MyFilter{theDialog,theEvent,itemHit)
DialogPtr theDialog;
EventRecord *theEvent;
short int *itemHit;

•
tdefine enterKey
tdefine returnKey

char
short int
Rect
Handle
Point

3;
13;

key;
iType;
iBox;
iHdl;
mouseLoc;

/*the enter key*/
/*the return key*/

/*for enter/return*/
/*returned item type*/
/*returned boundsrect*/
/*returned item handle*/
/*we'll play w/ mouse*/

SetPort{theDialog);
switch (theEvent->what) /*which event?*/

•

case keyDown:
case autoKey: /*he hit a key*/

key = theEvent->message; /*get ascii code*/
if ({key == enterKey) I I (key == returnKey»
(/*he hit CR or Enter*/

*itemHit = 1; /*he hit the 1st item*/
return(true); /*we handled it*/

) /*he hit CR or enter*/
break; /* case keydown, case autoKey */

case mouseDown: /*he clicked*/
mouseLoc theEvent->where; /*get the mouse pos'n*/
GlobalToLocal{&mouseLoc); /*convert to local*/
GetDItem{theDialog,2,&iType,&iHdl,&iBox); /*get our box*/
if (PtInRect{mouseLoc,&iBox»)
(/*he hit our item*/

InvertRect{&iBox);
*itemHit = 2; /*he hit the userItem*/
return{true); /*we handled it*/

) /*if he hit our userItem*/
break; /*case mouseDown */

) /*event switch*/
return{false); /* we're still here, so return false

(we didn't handle the event) */
/*MyFilter*/

Technical Note #34 page 3 of4 User Items in Dialogs

Invoking the Dialog Box

When we need this dialog box, we load it into memory as follows:

In MPW Pascal: •
PROCEDURE DoOurDialog;

VAR
myDialog : DialogPtr;
iType, itemHit : INTEGER;
iBox Rect;
iHdl : Handle;

{the dialog pointer}
{returned item type}
{returned boundsRect}
{returned item Handle}

run it}{let dialog manager
(until he hits ok.)
(throw it away)
(DoOurDialog)

BEGIN
myDialog := GetNewDialog(1001,nil,POINTER(-1}}; (get the box)
GetDItem(myDialog,2,iType,iHdl,iBox}; {2 is the item number}
SetDItem(myDialog,2,iType,@myDraw,iBox}; {install draw proc}
ShowWindow(theDialog}; {make it visible}
REPEAT

ModalDialog(@MyFilter, itemHit);
UNTIL itemHit = 1;
DisposDialog(myDialog};

END;

In MPWC3.0:

void DoOurDialog(}

DialogPtr
short int
short int
Rect
Handle

myDialog;
iType;
itemHit;
iBox;
iHdl;

/*the dialog pointer*/
/*returned item type*/
/*returned from ModalDialog*/
/*returned boundsRect*/
/*returned item Handle*/

•
myDialog = GetNewDialog(1001,nil, (WindowPtr}-1); /*get the box*/
GetDItem(myDialog,2,&iType,&iHdl,&iBox); /*2 is the item number*/
SetDItem(myDialog,2,iType,MyDraw,&iBox}; /*install draw proc*/
ShowWindow(myDialog}; /*make it visible*/

while (itemHit != 1) ModalDialog(MyFilter, &itemHit};
DisposDialog(myDialog); /*throw it away*/

/*DoOurDialog*/

Using userltem Items with Modeless Dialogs

If you are using userltern items in modeless dialog box, the Dialog Manager will call
the draw procedure when DialogSelect receives an update event for the dialog
box. When the user clicks on your userltern and it is enabled, _DialogSelect will
return TRUE. The iternHit will be equal to the item number of your userltern. Your
code can then handle this like the mouse-down event case in the example above.

•
Technical Note #34 page 4 of4 User Items in Dialogs

Macintosh Technical Notes

• #35: DrawPicture Problem

Written by:
Updated:

Mark Baumwell June 19, 1986
March 1, 1988

This note formerly described a problem with DrawPicture that occurred only
on 64K ROM machines. Information specific to 64K ROM machines has been
deleted from Macintosh Technical Notes for reasons of clarity .

•

•
Technical Note #35 page 1 of 1 DrawPicture Problem

•

•

•

Macintosh Technical Notes

• #36: Drive Queue Elements

See also:

Written by:
Updated:

The File Manager
The Device Manager

Bryan Stearns June 12, 1985
March 1, 1988

This note expands on Inside Macintosh's definition of the drive queue, which
is given in the File Manager chapter.

As shown in Inside Macintosh, a drive queue element has the following structure:

Note that dQDrvSz2 is only used if qType is 1. In this case, dQDrvSz2 contains the
high-order word of the size, and dQDrvSz contains the low-order word.

•

DrvQEl = RECORD
qLink: QElemPtr;
qType: INTEGER;
dQDrive: INTEGER;
dQRefNum: INTEGER;
dQFSID: INTEGER;
dQDrvSz: INTEGER;
dQDrvSz2: INTEGER;

END;

{next queue entry}
{queue type}
{drive number}
{driver reference number}
{file-system identifier}
{number of logical blocks on drive}
{additional field to handle large drive size}

Inside Macintosh also mentions four bytes of flags that preced each drive queue entry.
How are these flags accessed? The flags begin 4 bytes before the address pointed to by
the DrvQEIPtr. In assembly language, accessing this isn't a problem:

MOVE.L -4(AO),DO ;AO = DrvQElptr; get drive queue flags

•

If you're using Pascal, it's a little more complicated. You can get to the f lags with this
routine:

FUNCTION DriveFlags(aDQEPtr: DrvQE1Ptr): LONGINT;

VAR
flagsPtr ALONGINT; {we'll point at drive queue flags with this}

BEGIN
{subtract 4 from the DrvQE1Ptr, and get the LONGINT there}
flagsPtr := POINTER (ORD4 (aDQEPtr) - 4);
DriveFlags := flagsPtr A;

END;

Technical Note #36 page 1 of 3 Drive Queue Elements

From MPW C, you can use:

long DriveFlags(aDQEPtr)
DrvQEIPtr aDQEPtr;

/* DriveFlags */
return(*((long *)aDQEPtr - 1»;

) /* DriveFlags */

/* coerce flagsPtr to a (long *)
so that subtracting 1 from it
will back us up 4 bytes */

•
Creating New Drives

To add a drive to the drive queue, assembly-language programmers can use the
function defined below. It takes two parameters: the driver reference number of the
driver which is to "own" this drive, and the size of the new drive in blocks. It returns the
drive number created. It is vital that you not hard-code the drive number; if the user has
installed other non-standard drives in the queue, the drive number you're expecting may
already be taken. (Note that the example function below arbitrates to find an unused
drive number, taking care of this problem for you. Also, note that this function doesn't
mount the new volume; your code should take care of that, calling the Disk Initialization
Package to reformat the volume if necessary).

;---

--,
;FUNCTION AddMyDrive(drvSize: LONGINT; drvrRef: INTEGER): INTEGER;

;Add a drive to the drive queue. Returns the new drive number, or a negative
;error code (from trying to allocate the memory for the queue element) . •

EXPORTAddMyDrive PROC

;---
DQESize EQU 18 ;size of a drive queue element
;We use a constant here because the number in SysEqu.a doesn't take into
;account the flags LONGINT before the element, or the size word at the end.
;---
StackFrame
result
params
drvSize
drvrRef
paramSize
return
link
block
linkSize

RECORD
DS.W
EQU
DS.L
DS.W
EQU
DS.L
DS.L
DS.B
EQU
ENDR

{link), DECR
1

*
1
1
params-*
1
1
ioQElSize

*

;function result

;drive size parameter
;drive refNum parameter

;return address
;saved value of A6 from LINK
;parameter block for call to MountVol

;---
WITH StackFrame ;use the offsets declared above

;search existing drive queue for an unused number

LINK

LEA
MOVEQ

A6,#linkSize

DrvQHdr,AO
#4,DO

;create stack frame

;get the drive queue header
;start with drive number 4 •

Technical Note #36 page 2 of3 Drive Queue Elements

•
CheckDrvNum

MOVE.L
CheckDrv

CMP.W
BEQ.S
CMP.L
BEQ.S
MOVE.L
BRA.S

qHead(AO),AI

dqDrive(AI),DO
NextDrvNum
AI,qTail (AO)
GotDrvNum
qLink(AI),AI
CheckDrv

;start with first drive

;does this drive already have our number?
; yep, bump the number and try again.
;no, are we at the end of the queue?
;if yes, our number's unique! Go use it.
;point to next queue element
;go check it.

NextDrvNum
;this drive number is taken, pick another

ADDQ.W
BRA.S

GotDrvNum

tI,DO
CheckDrvNum

;bump to next possible drive number
;try the new number

;we got a good number (in DO.W), set it aside

MOVE.W DO, result (A6) ;return it to the user

;get room for the new DQE

;fill out the DQE• GotDQE

MOVEQ
NewPtr

BEQ.S
MOVE.W
BRA.S

tDQESize,DO
sys
GotDQE
DO,result(A6)
FinishUp

;size of drive queue element, adjusted
;get memory for it
;no error ... continue
;couldn't get the memory! return error
;and exit

MOVE.L

MOVE.W
CLR.W
MOVE.W
MOVE.W

t$80000, (AO)+ ;flags: non-ejectable; bump past flags

tI,qType(AO) ;qType of 1 means we do use dQDrvSz2
dQFSID(AO) ;"local file system"
drvSize(A6),dQDrvSz2(AO) ;high word of number of blocks
drvSize+2(A6),dQDrvSz(AO) ;low word of number of blocks

;call AddDrive

MOVE.W result(A6),DO
SWAP DO
MOVE.W drvrRef(A6),DO

AddDrive

;get the drive number back
;put it in the high word
;move the driver refNum in the low word
;add this drive to the drive queue

FinishUp
UNLK
MOVE.L
ADDQ
JMP

A6
(SP)+,AO
tparamSize,SP
(AO)

;get rid of stack frame
;get return address
;get rid of parameters
;back to caller

•
;---

ENDPROC

Technical Note #36 page 3 of3 Drive Queue Elements

•

•

•

Macintosh Technical Notes

• #37: Differentiating Between Logic Boards

See: Technical Note #129-SysEnvirons

Written by:
Updated:

Mark Baumwell June 19, 1986
March 1, 1988

Earlier versions of this note are obsoleted by existence of SysEnvirons,
which is documented in Technical Note #129.

•

•
Technical Note #37 page 1 of 1 Differentiating Between Logic Boards

•

•

•

•
Macintosh Technical Notes

#38: The ROM Debugger

Written by:
Updated:

Louella Pizzuti June 20, 1986
March 1, 1988

•

•

The debugger in ROM (not present on the Macintosh 128, Macintosh 512, or Macintosh
XL) recognizes the following commands:

PC [expr] (program counter)

Typing PC on a line by itself displays the program counter. Typing PC 50000 sets the
program counter to $50000.

8M [address [number (s)]] (set memory)

Typing 8M on a line by itself displays the next 96 bytes of memory. Typing 8M 50000 will
display memory starting at $50000. Typing 8M 5000048492054 6865 72652120 will
set memory starting at $50000 to $4849 ... Subsequently hitting Return will increment
the display a screen at a time.

OM [address] (display memory)

Typing OM on a line by itself displays the next 96 bytes of memory. Typing OM 50000 will
display memory at $50000. Subsequently hitting Return will increment the display a
screen at a time.

8R [expr] (status register)

Typing 8R on a line by itself displays the status register. Typing 8R 2004 sets the status
register to $2004.

TO (total display)

Displays memory at the "magic" location $3FFC80, which contains the current values of
the registers. The registers are displayed in the following order: 00-07, AO-A7, PC, 8R.

G [address] (gO)

Executes instructions starting at address. If G is typed on a line by itself, execution
begins at the address indicated by the program counter.

Note: If you want to exit to the shell, you just need to type: 8M 0 A9F4, then G 0

Note: If you crash into the debugger and the system hangs, try turning off your modem.

Technical Note #38 page 1 of 1 The ROM Debugger

•

•

•

Macintosh Technical Notes

• #39: Segment Loader Patch

Written by:

Modified by:
Updated:

Russ Daniels
Bryan Stearns
Jim Friedlander

August 1, 1985

November 15, 1986
March 1, 1988

This note formerly described a patch to the Segment Loader for 64K ROM
machines. Information specific to 64K ROM machines has been deleted from
Macintosh Technical Notes for reasons of clarity .

•

•
Technical Note #39 page 1 of 1 Segment Loader Patch

•

•

•

Macintosh Technical Notes

• #40: Finder Flags

See also:

Written by:
Modified by:
Updated:

The File Manager

Jim Friedlander
Jim Friedlander

June 16, 1986
March 2, 1987
March 1, 1988

This revision corrects the meanings of bits 6 and 7, which were interchanged
in the older version of this technical note. ResEdit uses these bits incorrectly
in versions older than 1.2.

The Finder keeps and uses a series of file information flags for each file. These flags are
located in the fdFlags field (a word at offset $28 into an HParamBlockRec) of the
ioFlFndrlnfo record of a parameter block. They may change with newer versions of
the Finder. Finders 5.4 and newer assign the following meanings to the flags:

•

•

Bit
o
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Technical Note #40

Meaning
Set if file/folder is on the desktop (Finder 5.0 and later)
bFOwnAppl (used internally)
reserved (currently unused)
reserved (currently unused)
bFNever (never SwitchLaunch) (not implemented)
bFAlways (always SwitchLaunch)
Set if file is a shareable application
reserved (used by System)
Inited (seen by Finder)
Changed (used internally by Finder)
Busy (copied from File System busy bit)
NoCopy (not used in 5.0 and later, formerly called BOZO)
System (set if file is a system file)
HasBundle
Invisible
Locked

page 1 of 1 Finder Flags

•

•

•

•
Macintosh
Technical Notes

Developer Technical Support

#41: Drawing Into an Off-Screen Bitmap
Revised by:
Written by:

Jon Zap & Forrest Tanaka
Jim Friedlander & Ginger Jernigan

June 1990
July 1985

This Technical Note provides an example of creating an off-screen bitmap, drawing to it, and then
copying from it to the screen.
Changes since April 1990: Clarified the section on window updates with off-screen bitmapsl
to explicitly limit these updates to your own windows.

The following is an example of creating and drawing to an off-screen bitmap, then copying from it
to an on-screen window. We supply this example in both MPW Pascal and C.

MPW Pascal

First, let's look at a general purpose function to create an off-screen bitmap. This function creates
the Gr a fP 0 rt on the heap. You could also create it on the stack and pass the uninitialized
structureto a function similar to this one.

• FUNCTION CreateOffscreenBitMap(VAR newOffscreen:GrafPtr; inBounds:Rect) BOOLEAN;

VAR
savePort
newPort

GrafPtr;
GrafPtr;

BEGIN
GetPort(savePort) ; {need this to restore thePort after OpenPort changes it}

{avoid wide-open clipRgn, to be safe}
{in case inBounds is > screen bounds}

•

newPort := GrafPtr(NewPtr(sizeof(GrafPort))); {allocate the GrafPort}
IF MemError <> noErr THEN BEGIN

CreateOffscreenBitMap :~ false; {failed to allocate it}
EXIT (CreateOffscreenBitMap) ;

END;
{

the OpenPort call does the following
allocates space for visRgn (set to screenBits.bounds) and clipRgn (set wide open)
sets portBits to screenBits
sets portRect to screenBits.bounds
etc. (see 1M 1-163,164)
side effect: does a SetPort(offScreen)

}

OpenPort(newPort) ;
{make bitmap exactly the size of the bounds that caller supplied}
WITH newPort A DO BEGIN {portRect, clipRgn, and visRgn are in newPort}

portRect := inBounds;
RectRgn(clipRgn, inBounds);
RectRgn(visRgn, inBounds);

END;

#41: Drawing Into an Off-Screen Bitmap lof6

{see if we had enough room for the bits}

dump the visRgn and clipRgn }
dump the GrafPort}

rowBytes * number of rows}
Note about using NewHandle rather than NewPtr}
LONGINT(inBounds.bottom - inBounds.top));

Macintosh Technical Notes

WITH newPortA.portBits DO BEGIN {baseAddr, rowBytes and bounds are in newPort}
bounds ;= inBounds;
{rowBytes is size of row It must be rounded up to even number of bytes}
rowBytes := ((inBounds.right - inBounds.left + 15) DIV 16) * 2;

{number of bytes in BitMap is
{see note at end of Technical
baseAddr := NewPtr(rowBytes *

END;
IF MemError <> noErr THEN BEGIN

SetPort(savePort);
ClosePort(newPort);
DisposPtr(Ptr(newPort)) ;
CreateOffscreenBitMap .- false;

END
ELSE BEGIN

{ since the bits are just memory, let's erase them before we start
EraseRect(inBounds); {OpenPort did a SetPort(newPort)}
newOffscreen := newPort;
SetPort(savePort);
CreateOffscreenBitMap .- true;

END;
END;

Here is the procedure to get rid of an off-screen bitmap created by the previous function:

I

Now that you know how to create and destroy an off-screen bitmap, let's go through the motions
of using one. First, let's define a few things to make the NewWindow call a little clearer.

PROCEDURE DestroyOffscreenBitMap(oldOffscreen
BEGIN

ClosePort(oldOffscreen} ;
DisposPtr(oldOffscreenA.portBits.baseAddr) ;
DisposPtr(Ptr(oldOffscreen)) ;

END;

GrafPtr) ;

dump the visRgn and clipRgn }
dump the bits }
dump the port } •

CONST
kIsVisible = true;
kNoGoAway = false;
kMakeFrontWindow = -1;
myString = 'The EYE'; {string to display}

Here's the body of the test code:

VAR
offscreen
ovalRect
myWBounds
OSRect
myWindow

BEGIN
InitToolbox;

GrafPtr;
Rect;
Rect;
Rect;
WindowPtr;

{our off-screen bitmap}
{used for example drawing}
{for creating window}
{portRect and bounds tor off-screen bitmap}

{exercise left to the reader}

myWBounds := screenBits.bounds; {size of main screen
InsetRect(myWBounds, 50,50); { make it fit better}
myWindow := NewWindow(NIL, myWBounds, 'Test Window', kIsVisible,

noGrowDocProc, WindowPtr(kMakeFrontWindow), kNoGoAway, 0);

IF NOT CreateOffscreenBitMap(offscreen,myWindowA.portRect) THEN BEGIN
SysBeep (1) ;

ExitToShell;
END; •

2 of6 #41: Drawing Into anOff-Screen Bitmap

•
Developer Technical Support

{ Example drawing to our off-screen bitmap }
SetPort(offscreen) ;
OSRect := offscreen~.portRect; offscreen bitmap's local coordinate rect }
ovalRect := OSRect;
FillOval(ovalRect, black);
InsetRect(ovalRect, 1, 20);
FillOval(ovalRect, white);
InsetRect(ovalRect, 40, 1);
FillOval(ovalRect, black);
WITH ovalRect DO

MoveTo((left+right-StringWidth(myString)) DIV 2, (top+bottom-12) DIV 2);
TextMode(srcXor) ;
DrawString (myString) ;

{ copy from the off-screen bitmap to the on-screen window. Note that in this
case the source and destination rects are the same size and both cover the
entire area. These rects are allowed to be portions of the source and/or
destination and do not have to be the same size. If they are not the same size
then CopyBits scales the image accordingly
}

SetPort(myWindow) ;
CopyBits(offscreen~.portBits, myWindow~.portBits,

offscreen~.portRect, myWindow~.portRect, srcCopy, NIL);

June 1990

First, let's look at a general purpose function to create an off-screen bitmap. This function creates
the GrafPort on the heap. You could also create it on the stack and pass the uninitialized
structure to a function similar to this one.•

DestroyOffscreenBitMap(offscreen) ;

WHILE NOT Button DO;
END.

MPWC

{remove the evidence}

{give user a chance to see the results}

Boolean CreateOffscreenBitMap(GrafPtr *newOffscreen, Rect *inBounds)
{

GrafPtr savePort;
Grafptr newPort;

GetPort(&savePort); /* need this to restore thePort after OpenPort */

/* allocate the grafPort */

/* failed to allocate the off-screen port */

/* avoid wide-open clipRgn, to be safe */
/* in case newBounds is > screen bounds */

•

newPort = (GrafPtr) NewPtr(sizeof(GrafPort)};
if (MemError () ! = noErr)

return false;
/*
the call to OpenPort does the following .

allocates space for visRgn (set to screenBits.bounds) and clipRgn (set wide open)
sets portBits to screenBits
sets portRect to screenBits.bounds
etc. (see 1M 1-163,164)
side effect: does a Set Port (&offScreen)

*/
OpenPort(newPort) ;
/* make bitmap the size of the bounds that caller supplied */
newPort->portRect = *inBounds;
newPort->portBits.bounds = *inBounds;
RectRgn(newPort->clipRgn, inBounds);
RectRgn(newPort->visRgn, inBounds);

/* rowBytes is size of row, it must be rounded up to an even number of bytes */
newPort->portBits.rowBytes = ((inBounds->right - inBounds->left + 15) » 4) « 1;

#41: Drawing Into an Off-Screen Bitmap 3 of6

Macintosh Technical Notes

/* dump the visRgn and clipRgn */
/* dump the GrafPort */
/* tell caller we failed */

/* number of bytes in BitMap is rowBytes * number of rows */
/* see notes at end of Technical Note about using NewHandle rather than NewPtr */
newPort->portBits.baseAddr =

NewPtr(newPort->portBits.rowBytes * (long) (inBounds->bottom - inBounds->top));
if (MemError () ! =noErr) { /» check to see if we had enough room for the bits * /

SetPort(savePort);
ClosePort(newPort);
DisposPtr((Ptr)newPort) ;
return false;
}

/* since the bits are just memory, let's clear them before we start */
EraseRect(inBounds); /* OpenPort did a SetPort(newPort) so we are ok */
*newOffscreen = newPort;
SetPort(savePort) ;
return true; /* tell caller we succeeded! */

Here is the function to get rid of an off-screen bitmap created by the previous function:

•

void DestroyOffscreenBitMap(GrafPtr oldOffscreen)
{

ClosePort(oldOffscreen);
DisposPtr(oldOffscreen->portBits.baseAddr);
DisposPtr((Ptr)oldOffscreen);

/* dump the visRgn and clipRgn */
/* dump the bits */
/* dump the port */

Now that you know how to create and destroy an off-screen bitmap, let's go through the motions
of using one. First, let's define a few things to make the NewWindow call a little clearer.

#define kIsVisible true
#define kNoGoAway false
#define kNoWindowStorage 01
#define kFrontWindow ((WindowPtr) -11)

Here's the body of the test code:

main ()
{

char* myString = n\pThe EYE"; /* string to display */

•
GrafPtr
Rect
Rect
Rect
WindowPtr

offscreen;
ovalRect;
myWBounds;
OSRect;
myWindow;

/* our off-screen bitmap */
/* used for example drawing */
/* for creating window */
/* portRect and bounds for off-screen bitmap*/

InitToolbox(); /* exercise for the reader */
myWBounds = qd.screenBits.bounds; /* size of main screen */
InsetRect(&myWBounds, 50,50); /* make it fit better */
myWindow = NewWindow(kNoWindowStorage, &myWBounds, "\pTest Window", kIsVisible,

noGrowDocProc, kFrontWindow, kNoGoAway, 0);
if (!CreateOffscreenBitMap(&offscreen, &myWindow->portRect)) {

SysBeep(l) ;
ExitToShell ();
}

•
40f6 #41: Drawing IntoanOff-Screen Bitmap

•
Developer Technical Support

/* Example drawing to our off-screen bitmap*/
SetPort(offscreen) ;
OSRect = offscreen->portRect; /* offscreen bitmap's local coordinate rect */
ovalRect = OSRect;
FillOval(&ovalRect, qd.black);
InsetRect(&ovalRect, 1, 20);
FillOval(&ovalRect, qd.white);
InsetRect (&ovalRect, 40, 1);
Fi110val(&ovalRect, qd.black);
MoveTo«ovalRect.left + ovalRect.right - StringWidth(myString)) » 1,

(ovalRect.top + ovalRect.bottom - 12) » 1);
TextMode(srcXor) ;
DrawString (myString) ;

/* copy from the off-screen bitmap to the on-screen window. Note that in this
case the source and destination rects are the same size and both cover the
entire area. These rects are allowed to be portions of the source and/or
destination and do not have to be the same size. If they are not the same size
then _CopyBits scales the image accordingly.
*/

Set Port (myWindow) ;
CopyBits (&offscreen->portBits, &(*myWindowl .portBits,

&offscreen->portRect, &(*myWindow) .portRect, srcCopy, OL);

DestroyOffscreenBitMap(offscreen); /* dump the off-screen bitmap */
while (lButton()); /* give user a chance to see our work of art */

June 1990

•

•

Comments

In the example code, the bits of the BitMap structure, which are pointed to by the ba s eAddr
field, are allocated by a NewPt r call. If your off-screen bitmap is close to the size of the screen,
then the amount of memory needed for the bits can be quite large (on the order of 20K for the
Macintosh SE or 128K for a large screen). This is quite a lot of memory to lock down in your
heap and it can easily lead to fragmentation if you intend to keep the off-screen bitmap around for
any length of time. One alternative that lessens this problem is to get the bits via NewHandle so
the Memory Manager can move them when necessary. To implement this approach, you need to
keep the handle separate from the GrafPort (for example, in a structure that combines a
GrafPort and a Handle). When you want to use the off-screen bitmap you would then lock
the handle and put the dereferenced handle into the baseAddr field. When you are not using the
off-screen bitmap you can then unlock it.

This example does not demonstrate one of the more typical uses of off-screen bitmaps, which is to
preserve the contents of windows so that after a temporary window or dialog box obscures part of
your windows and is then dismissed, you can quickly handle the resulting update events without
recreating all of the intermediate drawing commands.

Make sure you only restore the pixels within the content regions of your own windows in case the
temporary window partly obscures windows belonging to other applications or to the desktop.
Another application could change the contents of its windows while they are behind your
temporary window, so you cannot simply restore all the pixels that were behind the temporary
window because that would restore the old contents of the other application's windows. Instead,
you could keep keep an off-screen bitmap for each of your windows and then restore them by
copying each bit map into the corresponding window's ports when they get their update events.

An alternate method is to make a single off-screen bitmap that is as large as the temporary windowI
and a region that is the union of the content regions of your windows. Before you display the

#41: Drawing Into an Off-Screen Bitmap 50f6

Macintosh Technical Notes

temporary window, copy the screen into the off-screen bit map using the region as a mask. After
the temporary window is dismissed, restore the obscured area by copying from the off-screen bit
map into a copy of the Window Manager port, and use the region as a mask. If the region has the
proper shape and location, it prevents CopyBi t s from drawing outside of the content regions of
your windows. See Technical Note-#194, WMgrPortability for details about drawing across
windows.

In some cases it can be just as fast and convenient to simply define a picture (PICT) and then draw
it into your window when necessary. There are cases, however, such as text rotation, where it is
advantageous to do the drawing off the screen, manipulate the bit image, and then copy the result
to the visible window (thus avoiding the dangers inherent in writing directly to the screen). In
addition, this technique reduces flicker, because all of the drawing done off the screen appears on
the screen at once.

It is also important to realize that, if you plan on using the pre-Color QuickDraw eight-color model,
an off-screen bitmap loses any color information and you do not see your colors on a system that is
capable of displaying them. In this case you should either use a PICT to save the drawing
information or check for the presence of Color QuickDraw and, when it is present, use a P ixMap
instead of a Bi tMap and the color toolbox calls (Inside Macintosh, Volume V) instead of the
standard QuickDraw calls (Inside Macintosh, Volume I).

You may also want to refer to the OffScreen library (DTS Sample Code #15) which provides both
high- and low-level off-screen bitmap support for the 128K and later ROMs. The OffSample
application (DTS Sample Code #16) demonstrates the use of this library.

Further Reference:
• Inside Macintosh, Volumes I & IV, QuickDraw
• Inside Macintosh, Volume V, Color QuickDraw
• Technical Note #120, Drawing Into an Off-Screen Pixel Map
• Technical Note #194, WMgrPortability
• DTS Macintosh Sample Code #15, OffScreen & #16, OffSample

•

•

•
6of6 #41: Drawing Into an Off-Screen Bitmap

Macintosh Technical Notes

• #42: Pascal Routines Passed by Pointer

See also: Macintosh Memory Management: An Introduction

Written by:
Updated:

Scott Knaster July 22, 1985
March 1, 1988

•

•

Routines passed by pointer are used in many places in conjunction with Macintosh
system routines. For example, filter procedures for modal dialogs are passed by pointer,
as are controls' action procedures (when calling TrackControl), and I/O completion
routines.

If you're using MPW Pascal, the syntax is usually

partCode := TrackControl(theControl, startPt, @MyProc)

where MyProc is the procedure passed by pointer (using the @ symbol).

Because of the way that MPW Pascal (and some other compilers) construct stack
frames, any procedure or function passed by pointer must not have its declaration
nested within another procedure or function. If its declaration is nested, the program will
crash, probably with an illegal instruction error. The following example demonstrates
this:

PROGRAM CertainDeath;

PROCEDURE CallDialog;

VAR
x : INTEGER;

FUNCTION MyFilter(theDialog: DialogPtr; VAR theEvent: EventRecord;
VAR iternHit: INTEGER): Boolean;

{note that MyFilter's declaration is nested within CallDialog}

BEGIN {MyFilter}
{body of MyFilter}

END; {MyFilter}

BEGIN {CallDialog}
ModalDialog(@MyFilter,iternHit) {<------------ will crash here}

END; {CallDialog}

BEGIN {main program}
CallDialog;

END .

Technical Note #42 page 1 of 1 Pascal Routines Passed by Pointer

•

•

•

Macintosh Technical Notes

• #43: Calling LoadSeg

See also:

Written by:
Updated:

The Segment Loader

Gene Pope October 15, 1985
March 1, 1988

Earlier versions of this note described a way to call the LoadSeg trap, which is
used internally by the Segment Loader. We no longer recommend calling
LoadSeg directly.

•

•
Technical Note #43 page 1 of 1 Calling LoadSeg

•

•

•

Macintosh Technical Notes

• #44: HFS Compatibility

See also:

Written by:
Modified by:

Updated:

The File Manager

Jim Friedlander
Scott Knaster
Jim Friedlander

October 9, 1985
December 5, 1985

March 1, 1988

•

•

This technical note tells you how to make sure that your applications run
under the Hierarchical File System (HFS).

The Hierarchical File System (HFS) provides fast, efficient management of larger
volumes than the original Macintosh File System (MFS). Since HFS is hierarchical, HFS
folders have a meaning different from MFS folders. In MFS, a folder has only graphical
significance-it is only used by the Finder as a means of visually grouping files. The
MFS directory structure is actually flat (all files are at the 'root' level). Under HFS, a
folder is a directory that can contain files and other directories.

A folder is accessed by use of a WDRefNum (Working Directory reference number). Calls
that return a vRefNum when running under MFS may return a WDRefNum when running
under HFS. You may use a WDRefNum wherever a vRefNum may be used.

In order to provide for compatibility with software written for MFS, the HFS calls that
open files search both the default directory and the directory that contains the System
and the Finder (HFS marks this last directory so it always knows where to look for the
System and the Finder).

Your goal should be to write programs that are file system independent. Your programs
should not only be able to access files on other volumes, but also files that are in other
directories. Accomplishing this is not difficult-most applications that were written for
MFS work correctly under HFS. If you find that your current applications do not run
correctly under HFS, you should check to see if you are doing any of the following five
things:

Are you using Standard File?

This is very important to ensure that your application will run correctly under HFS. HFS
uses an extended Standard File, which allows the user to select from files in different
directories. This increased functionality was implemented without changing Standard
File's external specification-the only difference is that SFReply. vRefNum can now be
a WDRe fNum. Please note that using Standard File's dialog hook and filter procs or
adding controls of your own will not cause compatibility problems with HFS.

Technical Note #44 page 1 of 2 HFS Compatibility Issues

Existing applications that use Standard File properly run without modification under
HFS. Applications that take the SFReply. vRefNum and convert that to a volume name,
then append it to SFReply. fName (as in #2 below) do not function correctly under
HFS-the user can only open files in the root directory. If you call Open with •
SFReply. vRefNum and SFReply. fName, everything will work correctly. Remember,
SFReply. vRefNum may be a WDRefNum . Using Standard File will virtually guarantee
that your application will be compatible with MFS, HFS, and future file systems.

Are you concatenating volume names to file names, i.e. using file
names of the form VOLUME: fileName?

Applications that do this do not work correctly under HFS (in fact, they do not even run
correctly under MFS). Instead of this, use a vRefNum to access a volume or a directory.
Fully qualified pathnames (such as volume: folderl: folder2: filename) work
correctly, but we don't recommend that you use them. Please don't ever make a user
type in a full pathname!

Are you searching directories for files using a loop such as
FOR index:= 1 to ioVNmFls DO

where ioVNmFls was returned from a PBGetVinfo call?

This technique should not be used. Instead, use repeated calls to PBGetFlnfo using
ioFDirlndex until fnfErr is returned. Indexed calls to PBGetFlnfo will return files in
the directory specified by the vRefNum that you put in the parameter block.

Are you assuming that a vRefNum will actually refer to a volume? •

A vRefNum can now be a WDRefNum. A WDRefNum indicates which working directory
(folder) a file is in, not which volume the file is on. Don't think of a vRe fNum as a way to
access a volume, but rather as a means of telling the file system where to find a file.

Are you walking through the VeB queue?

You should let us do the walking for you. Using indexed calls to PBGetVlnfo will allow
you to get information about any mounted volume. You shouldn't walk through the VCB
queue because it changed for HFS and might change in the future. The routines that we
supply will correctly access information in the VCB queue.

Are you using the file system's "IMMEO" bit? (assembly language only)

Inside Macintosh describes bit 9 of the trap word as the immediate bit. In fact, setting this
bit under MFS did not work as documented; it did not have the desired effect of
bypassing the file I/O queue. Under HFS, this bit is used; it distinguishes HFS varieties
of calls from MFS varieties. For example, the PBOpen call has this bit clear; PBHOpen has
it set. Therefore, you must be sure that your file system calls do not use this bit as the
immediate bit.

•
Technical Note #44 page 2 of 2 HFSCompatibility Issues

Macintosh Technical Notes

• #45: Inside Macintosh Quick Reference

Compiled by:
Updated:

Jim Friedlander August 2, 1985
March 1, 1988

This note formerly listed the traps from Inside Macintosh Volumes I-III. Better
references are now available elsewhere.

•

•
Technical Note #45 page 1 of 1 Inside Macintosh Reference

•

•

•

Macintosh Technical Notes

• #46: Separate Resource Files

See also:

Written by:
Updated:

The Resource Manager

Bryan Stearns October 16, 1985
March 1, 1988

•

•

During application development, you use a resource compiler (RMaker or Rez) to
convert a resource definition file into an executable application. You rarely change
anything but your CODE resources during development, and the resource compiler
spends a lot of time compiling other resources which have not changed since they were
originally created.

To save time, some developers have adopted the technique of storing all of these
"static" resources in a separate resource file. This file should be placed on the same
volume as your application; when your application starts up, use OpenResF ile to open
the separate file. This will cause the resource map for the separate file to be searched
before the normal application resource file's map (which now contains mostly CODE
resources, along with any brand-new resources still being tested).

This will have little or no effect on the rest of your program. Any time that a resource is
needed, both resource files will be searched automatically so you don't need to
change each Ge t.Re s o u r c e call. (Actually, having the extra resource file open has a
minor impact on memory management, and uses one more file-control block; unless
you're using a lot of open files at once, or are running at the limits of available memory
without segmentation, this shouldn't affect you.)

Once your application is close to being finished, you can use ResEdit to move all the
resources back into the main application file, and remove the extra OpenResFile at the
beginning of your application. You should do this for any major release (alpha, beta,
and any other 'heavy-testing' releases). Other minor modifications (such as fine-tuning
dialog box item positions) may also be done with ResEdit at this time.

The only catch is that you must be careful if your application adds resources to its own
resource file. Most applications do not do this (it's not really a great idea, and causes
problems with file servers).

Technical Note #46 page 1 of 1 Separate Resource Files

•

•

•

Macintosh Technical Notes

• #47: Customizing Standard File

See also:

Written by:
Updated:

The Standard File Package

Jim Friedlander October 11, 1985
March 1, 1988

•

•

This note contains an example program that demonstrates how SFPGetFile
can be customized using the dialog hook and file filter functions.

SFPGetFile'S dialog hook function and file filter function enable you to customize
SFPGetFile'S behavior to fit the needs of your application. This technical note consists
primarily of a short example program that

1) changes the title of the Open button to 'MyOpen',

2) adds two radio buttons so that the user can choose to display either text files or
text files and applications.

3) adds a quit button to the SFPGetFile dialog,

All this is done in a way so as to provide compatibility with the Macintosh File System
(MFS), the Hierarchical File System (HFS) and (hopefully) future systems. If you have
any questions as you read, the complete source of the demo program and the resource
compiler input file is provided at the end of this technical note.

Basically, we need to do three things: add our extra controls to the resource compiler
input file, write a dialog hook function, and write a file filter function.

Modifying the Resource Compiler Input File

First we need to define a dialog in our resource file. It will be DLOG #128:

CONST myDLOGID = 128;

and it's Rez description is:

resource 'DLOG' (128, purgeab1e) {
to, 0, 200, 349),
dBoxProc, invisible, noGoAway,
OxO,
128,
"MyGF"

} ;

Technical Note #47 page 1 of 12 Customizing SFPGetFile

The above coordinates (0 0 200 349) are from the standard Standard File dialog. If you
need to change the size of the dialog to accommodate new controls, change these
coordinates. Next we need to add a DITL in our resource file that is the same as the
standard HFS DITL #-4000 except for one item. We need to change the left coordinate •
of Userltem #4, or part of the dialog will be hidden if we're running under MFS:

/* [4] */
/* left coordinate changed from 232 to 252 so program will

work on MFS */
{39, 252, 59, 347},
Userltem {

disabled
} ;

None of the other items of the DITL should be changed, so that your program will remain
as compatible as possible with different versions of Standard File. Finally, we need to
add three items to this DITL, two radio buttons and one button (to serve as a quit button)

/* [11] textButton */
{1, 14,20, 142},
RadioButton {

enabled,
"Text files only"

} ;

/* [12] textAppButton */
{19, 14, 38, 176},
RadioButton {

enabled,
"Text and applications"

} ;

/* [13] quitButton */
{6, 256, 24, 336},
Button {

enabled,
"Quit"

Because we've added three items, we need also need to change the item count for the
DITL from 10 to 13. We also include the following in our resource file:

resource 'STR#' (256) {
{/* array StringArray: 1 elements */

/* [1] */
"MyOpen"

} ;

That's all there is to modify in the resource file.

•

•
Technical Note #47 page 2 of 12 Customizing SFPGetF ile

•

•

The Dialog Hook

We will be calling SFPGetFiIe as follows:

SFPGetFile (wher, I I, @SFFileFilter, NumFileTypes,
MyFileTypes, @MySFHook, reply, myDLOGID,nil);

Notice that we're passing @MySFHook to Standard File. This is the address of our dialog
hook routine. Our dialog hook is declared as:

FUNCTION MySFHook(MySFitem: INTEGER; theDialog: DialogPtr) : INTEGER;

A dialog hook routine allows us to see every item hit before standard file acts on it. This
allows us to handle controls that aren't in the standard SFPGetFiIe'S DITL or to handle
standard controls in non-standard ways. The dialog hook in this example consists of a
case statement with MySF i tern as the case selector. Before SFPGetF i Ie displays its
dialog, it calls our dialog hook, passing it a -1 as MySFi tern. This gives us a chance to
initialize our controls. Here we will set the textAppBut ton to off and the textBut ton
to on:

GetDItem(theDialog,textAppButton,itemType,itemToChange,itemBox);
SetCtlValue(controlHandle(itemToChange),btnOff);
GetDItem(theDialog,textButton,itemType,itemToChange,itemBox);
SetCtlValue(controlHandle(itemToChange),btnOn);

and we can also change the title of an existing control. Here's how we might change the
title of the Open button using a string that we get from a resource file:

GetIndString(buttonTitle,256,1);
If buttonTitle <> I I then Begin { if we really got the resource}

GetDItem(theDialog,getOpen,itemType,itemToChange,itemBox);
SetCtitle(controlHandle(itemToChange),buttonTitle);

End; {if} {if we didn't get the resource, don't change the title

Upon completion of our routine that handles the -1, we return a -1 to standard file:

MySFHook:= MySFItem; {pass back the same item we were sent}

•

We now have a SFPGetFiIe dialog displayed that has a quit button and two radio
buttons (the textOnly button is on, the TextApp button is off). In addition, the standard
Open button has been renamed to MyOpen (or whatever STR is the first string in STR#
256). This was all done before SFPGet File displayed the dialog. Once our hook is
exited, SFPGetFiIe displays the dialog and calls ModalDialog .

Technical Note #47 page 3 of 12 Customizing SFPGetFile

When the user clicks on an item in the dialog, our hook is called again. We can then
take appropriate actions, such as highlighting the textButton and un-highlighting the
textAppButton if the user clicks on the textBut ton. At this time, we can also update a
global variable (textOnIy) that we will use in our file filter function to tell us which files •
to display. Notice that we can redisplay the file list by returning a 101 as the result of
MySFHook. (Standard File for Systems newer than 4.3 will also read the low memory
globals, CurDirStore and SFSaveDisk, and switch directories when necessary if a 101
is returned as the result. Thus, you can point Standard File to a new directory, or a new
disk.) For example, when the textButton is hit we turn the textAppButton off, turn the
textButton on, update the global variable textOnIy, and tell SFPGetFiIe to
redisplay the list of files the user can choose from:

if not textOnly then Begin {if textOnly was turned off, turn it on now}
GetDItem(theDialog,textAppButton,itemType,itemToChange,itemBox);
SetCtlValue(controlHandle(itemToChange),btnOff);
GetDItem(theDialog,textButton,itemType,itemToChange,itemBox);
SetCtlValue(controlHandle(itemToChange),btnOn);
textOnly:=TRUE; {toggle our global variable for use in the filter}
MySFHook:= reDrawList;{lOl} {we must tell SF to redraw the list}

End; {if not textOnly }

If our quit button is hit, we can pass SFPGet File back the cancel button:

MySFHook:= getCancel;

If one of SFPGetFiIe'S standard items is hit, it is very important to pass that item back to
SFPGetFiIe:

MySFHook:= MySFItem; {pass back the same item we were sent}

The File Filter

Remember, we called SFPGetFiIe as follows:

SFPGetFile (wher, ", @SFFileFilter, NumFileTypes,
MyFileTypes, @MySFHook, reply,myDLOGID,nil);

Notice that we're passing @SFFiIeFiIter to SFPGetFiIe. This is the address of our
file filter routine. A file filter is declared as:

FUNCTION SFFileFilter (p: ParmBlkPtr): BOOLEAN;

A file filter routine allows us to control which files SFPGetFiIe will display for the user.
Our file filter is called for every file (of the type(s) specified in the typelist) on an MFS
disk, or for every file (of the type(s) specified in the typelist) in the current directory on an
HFS disk. In addition, SFPGetFiIe displays HFS folders for us automatically. Our file
filter selects which files should appear in the dialog by returning FALSE for every file
that should be shown and TRUE for every file that shouldn't.

•

•
Technical Note #47 page 4 of 12 Customizing SFPGetFile

For example, using our global variable textOnly (which we set in our dialog hook,
remember?):

• FUNCTION SFFileFilter(p:parmBlkPtr) :boolean;

Begin {SFFileFilter}
SFFileFilter:= TRUE; {Don't show it -- default}

•

•

if textOnly then
if pA.ioF1FndrInfo.fdType 'TEXT' then

SFFileFilter:= FALSE {Show TEXT files only}
else Begin
End {dummy else}

else
if (pA.ioF1FndrInfo.fdType = 'TEXT') or

(pA.ioF1FndrInfo.fdType = 'APPL') then
SFFileFilter:= FALSE; { show TEXT or APPL files}

End; {SFFileFilter}

SFPGetF ile calls the file filter after it has called our dialog hook. Please remember that
the filter is passed every file of the types specified in the typelist (MyFileTypes). If you
want your application to be able to choose from all files, pass SFPGetFile a -1 as
n umType s. For information about parameters to SFP Get F i 1 e that haven't been
discussed in this technical note, see the Standard File Package chapter of Inside
Macintosh.

That's all there is to it!! Now that you know how to modify SFP GetF i le to suit your
needs, please don't rush off and load up the dialog window with all kinds of controls and
text. Please make sure that you adhere to Macintosh interface standards. Similar
techniques can be used with SFGetFile, SFPutFile and SFPPutFile.

The complete source of the demo program and of the resource compiler input file
follows:

Technical Note #47 page 5 of 12 Customizing SFPGetFile

MPW Pascal Source

{$R-}

{Jim Friedlander

program SFGetDemo;

USES
MemTypes,
QuickDraw,
OSIntf,
ToolIntf,
PackIntf;

{$D+}

Macintosh Technical Support 9/30/85} •
CONST

myDLOGID 128; {ID of our dialog for use with SFPGetFile}

VAR
wher: Point;
reply: SFReply;
textOnly: BOOLEAN;
myFileTypes: SFTypeList;
NumFileTypes: integer;

{ where to display dialog }
{ reply record }
{ tells us which files are currently being displayed}

{ we won't actually use this}

{--}
FUNCTION MySFHook{MySFitem:integer; theDialog:DialogPtr): integer;

CONST
textButton
textAppButton
quitButton

stayInSF

firstTime

11;
12;
13;

0;

-1;

{DITL item number of textButton}
{DITL item number of textAppButton}
{DITL item number of quitButton}

{if we want to stay in SF after getting an Open hit,
we can pass back a 0 from our hook (not used in

this example)
{the first time our hook is called, it is passed a

-1}

•
{The following line is the key

reDrawList

btnOn
btnOff

to the whole routine -- the magic 101!!}
101; {returning 101 as item number will

file list to be recalculated}
1; {control value for on}
0; {control value for off}

cause the

VAR
itemToChange: Handle;

itemBox:Rect;
itemType:integer;
buttonTitle: Str255;

Begin {MySFHook}
case MySFItem of

firstTime: Begin

{needed for GetDItem and SetCtlValue}
{needed for GetDItem}
(needed for GetDItem)
{needed for GetIndString}

before the dialog is drawn, our hook gets called
with a -1 (firstTime) as the item so we can change

things like button titles, etc. }

•
Technical Note #47 page 6 of 12 Customizing SFPGetFile

•

•

{Here we will set the textAppButton to OFF, the textButton to ON}
GetDItem(theDialog,textAppButton,itemType,itemToChange,itemBox);
SetCtIValue(controIHandle(itemToChange),btnOff);
GetDItem(theDialog,textButton,itemType,itemToChange,itemBox);
SetCtIValue(controIHandle(itemToChange),btnOn);

GetIndString(buttonTitle,256,1);
{get the button title from a resource file}

If buttonTitle <> " then Begin {if we really got the resource}
GetDItem (theDialog, getOpen, itemType,itemToChange, itemBox); {get a handle to the

open button}
SetCtitle(controIHandle(itemToChange),buttonTitle);

End; (if) {if we can't get the resource, we just won't change
the open button's title}

MySFHook:= MySFItem; {pass back the same item we were sent}
End; {firstTime}

{Here we will turn the textAppButton OFF, the text Button ON and redraw the list}
textButton: Begin

if not textOnly then Begin
GetDItem(theDialog,textAppButton,itemType,itemToChange,itemBox);
SetCtIValue(controIHandle(itemToChange),btnOff);
GetDItem(theDialog,textButton, itemType, itemToChange, itemBox);
SetCtIValue(controIHandle(itemToChange),btnOn);
textOnly:=TRUE;
MySFHook:= reDrawList; {we must tell SF to redraw the list}

End; {if not textOnly}
End; {textOnlyButton}

{Here we will turn the text Button OFF, the textAppButton ON and redraw the list}
textAppButton: Begin

if textOnly then Begin
GetDltem(theDialog,TextButton,itemType,itemToChange,itemBox);
SetCtIValue(controIHandle(itemToChange),BtnOff);
GetDItem(theDialog,TextAppButton,itemType,itemToChange,itemBox);
SetCtIValue(controIHandle(itemToChange},BtnOn);
TextOnly:=FALSE;
MySFHook:= reDrawList; {we must tell SF to redraw the list}

End; (if not textOnly)
End; {textAppButton}

quitButton: MySFHook:= getCancel; {Pass SF back a 'cancel button'}

must pass SF's 'standard' item hits back to SF}{! ! ! Ivery important !!!! We
otherwise Begin

MySFHook:=
End; {otherwise}

End; {case}
End; {MySFHook}

MySFItem; the item hit was one of SF's standard items ... }
so just pass it back}

•

{--}

Technical Note#47 page 7 of12 Customizing SFPGetFile

FUNCTION SFFileFilter(p:parmBlkPtr) :boolean; (general strategy -- check value of global var
textOnly to see which files to display}

Begin (SFFileFilter}
SFFileFilter:= TRUE;

if textOnly then
if pA.ioFlFndrInfo.fdType

SFFileFilter:= FALSE
else Begin
End (dummy else}

else
if (pA.ioFlFndrInfo.fdType

SFFileFilter:= FALSE;
End; (SFFileFilter}

(Don't show it -- default}

'TEXT' then
(Show it}

'TEXT') or (pA.ioFlFndrlnfo.fdType
(Show it}

'APPL') then

•
(--)
Begin (main program)

InitGraf (@thePort);
InitFonts;
InitWindows;
TElnit;
InitDialogs (nil};

wher.h:=80;
wher.v:=90;
NumFileTypes:= -1; (Display all files}

we don't need to initialize MyFileTypes, because we want to get a chance to filter every file
on the disk in SFFileFilter - we will decide what to show and what not to. If you want to
filter just certain types of files by name, you would set up MyFileTypes and NumFileTypes
accordingly}

repeat
textOnly:= TRUE; (each time SFPGetFile is called, initial display will be text-only

files}
SFPGetFile (wher, ", @SFFileFilter, NumFileTypes, MyFileTypes, @MySFHook,

replY,myDLOGID,nil);
until reply.good = FALSE;

(until we get a cancel button hit (or a Quit button -- thanks to our dialog hook) }
End.

MPWC Source

#include <Types.h>
#include <Quickdraw.h>
#include <Resources.h>
#include <Fonts.h>
#include <Windows.h>
#include <Menus.h>
#include <TextEdit.h>
#include <Events.h>
#include <Dialogs.h>
#include <Packages.h>
#include <Files.h>
#include <Controls.h>
#include <ToolUtils.h>

•

•
Technical Note #47 page 8 of 12 Customizing SFPGetFile

•
/*DITL item number of textButton*/

#define textButton 11

/*DITL item number of textAppButton*/
#define textAppButton 12

/*DITL item number of quitButton*/
#define quitButton 13

/*if we want to stay in SF after getting an Open hit, we can pass back a 0
from our hook (not used in this example) */

#define staylnSF 0

/*the first time our hook is called, it is passed a -1*/
tdefine firstTime -1

/*The following line is the key to the whole routine -- the magic 101! !*/
/*returning 101 as item number will cause the file list to be recalculated*/

tdefine reDrawList 101

/*control value for on*/
tdefine btnOn 1

/*control value for off*/
#define btnOff 0

/*resource ID of our DLOG for SFPGetFile*/
tdefine myDLOGID 128

main ()
(/*main program*/•
Boolean
displayed*/

textOnly; /* tells us which files are currently being

pascal short MySFHook();
pascal Boolean flFilter();

Point
SFReply

/* reply record */
SFTypeList

/* we won't actually
short int

wher;
reply;

myFileTypes;
use this * /
NumFileTypes

/* where to display dialog */

-1;

•

InitGraf(&qd.thePort);
InitFonts () ;
FlushEvents(everyEvent, 0);
InitWindows () ;
TEInit () ;
InitDialogs(nil);
InitCursor () ;

wher.h=80;
wher.v=90;

Technical Note #47 page 9 of12 Customizing SFPGetFile

/* we don't need to initialize MyFileTypes, because we want to get a chance to filter every
file on the disk in flFilter - we will decide what to show and what not to. if you want to
filter just certain types of files by name, you would set up MyFileTypes and NumFileTypes
accordingly*/

do
textOnly= true;

text-only files*/
SFPGetFile(&wher,

}while (reply.good);
*/

} /* main */

/*each time SFPGetFile is called, initial display will be

.... ,flFilter, NumFileTypes, myFileTypes, MySFHook, &reply,myDLOGID,nil);
/*until we get a cancel button hit (or a Quit button in this case)

•
pascal short MySFHook(MySFltem,theDialog)
short MySFltem;
DialogPtr theDialog;

Handle itemToChange;
Rect itemBox;
short LtemType;
char buttonTitle [256];

switch (MySFltem)
{

/*needed for GetDltem and SetCtlValue*/
/*needed for GetDltem*/

/*needed for GetDltem*/
/*needed for GetlndString*/

case firstTime:
/* before the dialog is drawn, our hook gets called with a -1 (firstTime) ... */
/* as the item so we can change things like button titles, etc. */
/*Here we will set the textAppButton to OFF, the textButton to ON*/
GetDltem(theDialog,textAppButton,&itemType,&itemToChange,&itemBox);
SetCtlValue(itemToChange,btnOff);
GetDltem(theDialog,textButton,&itemType,&itemToChange,&itemBox};
SetCtlValue(itemToChange,btnOn);

GetlndString«char *)buttonTitle,256,1);
/*get the button title from a resource file*/

if (buttonTitle[O] != 0) /* check the length of the p-string to

see if we really got the resource*/

GetDltem(theDialog,getOpen, &itemType, &itemToChange,&itemBox); /*get a

handle to the open button*/
SetCTitle(itemToChange,buttonTitle};

/*if we can't get the resource, we just won't change the open button's title*/
return MySFltem; /*pass back the same item we were sent*/
break;

/*Here we will turn the textAppButton OFF, the text Button ON and redraw the list*/
case textButton:

if (!textOnly)
{

GetDltem(theDialog,textAppButton,&itemType,&itemToChange,&itemBox);
SetCtlValue(itemToChange,btnOff) ;
GetDltem (theDialog, textButton, &itemType, &itemToChange, &itemBox);

SetCtlValue(itemToChange,btnOn);
textOnly=true;
return(reDrawList};

/*we must tell SF to redraw the list*/
/*if !textOnly*/

return MySFltem;
break;

•

•
Technical Note#47 page 1Oof 12 Customizing SFPGetFile

•

•

•

/*Here we will turn the textButton OFF, the textAppButton ON and redraw the list*/
case textAppButton:

if (textOnly)
(

GetDltem(theDialog,textButton,&itemType,&itemToChange,&itemBox);
SetCtlValue(itemToChange,btnOff);
GetDltem(theDialog,textAppButton,&itemType,&itemToChange,&itemBox);
SetCtlValue(itemToChange,btnOn);
textOnly=false;
return(reDrawList);

/*we must tell SF to redraw the list*/
/*if not textOnly*/

return MySFltem; /*pass back the same item we were sent*/
break;

case quitButton:
return(getCancel);

/*Pass SF back a 'cancel button'*/

/*!!! !!!very important !!!!!!!! We must pass SF's 'standard' item hits back to SF*/
default:

return(MySFltem); /* the item hit was one of SF's standard items ... */
/*switch*/
return(MySFltem); /* return what we got */

/*MySFHook*/

pascal Boolean flFilter(pb}
FileParam *pb;

/* is this gross or what??? */
return«textOnly) ? «pb->ioFlFndrlnfo.fdType) != 'TEXT')

«pb->ioFlFndrlnfo.fdType) != 'TEXT') &&
«pb->ioFlFndrlnfo.fdType) != 'APPL'»;

/*flFilter* /

Rez Input File

tinclude "types.r"

resource 'STRt' (256)

"MyOpen"

) ;

resource 'DLOG' (128, purgeable) (
(0, 0, 200, 349),
dBoxProc,
invisible,
noGoAway,
OxO,
128,
"MyGF"

} ;

Technical Note #47 page 11 of12 Customizing SFPGetFile

resource 'DITL' (128, purgeable) {

/* [1) */
{l38, 256, 156, 3361,
Button { enabled, "Open" I;
/* [2] */
{1152, 59, 1232, 771,
Button { enabled, "Hidden");
/* [3) */
{l63, 256, 181, 3361,
Button { enabled, "Cancel" };

/* [4] */
{39, 252, 59, 347},
UserItem { disabled };

/* [5] */
{68, 256, 86, 336},
Button { enabled, "Eject" I;
/* [6) */
{93, 256, 111, 336},
Button { enabled, "Drive" };
/* (7) */
{39, 12, 185, 2301,
UserItem { enabled };

/* [8) */
{39, 229, 185, 2451,
UserItem { enabled I;
/* [9] */
{124, 252, 125, 3401,
UserItem { disabled };

/* [10) */
{1044, 20, 1145, 116},

StaticText { disabled, "" I;
/* (11) */
t i , 14, 20, 142),
RadioButton { enabled, "Text files only" I;
/* [12) */
t i s. 14, 38, 1761,
RadioButton { enabled, "Text and applications" };
/* [13] */
{6, 256, 24, 3361,
Button { enabled, "Quit"

} ;

•

•

•
Technical Note #47 page 120112 Customizing SFPGetFile

Macintosh Technical Notes

• #48: Bundles

See also:

Written by:
Updated:

The Finder Interface

Ginger Jernigan November 1, 1985
March 1, 1988

•

This note describes what a bundle is and how to create one.

A bundle is a collection of resources. Bundles can be used for a number of different
purposes, and are currently used by the Finder ito tie an icon to a file type, allowing your
application or data file to have its own icon.

How to Create a Bundle

A bundle is a collection of resources. To make a bundle for finder icons, we need to set
up four types of resources: an ICN#, an FREF, a creator STR and a BNDL.

The ICN# resource type is an icon list. Each ICN# resource contains one or more icons,
on after another. For Finder bundle icons, there are two icons in each ICN#: one for the
icon itself and one for the mask. In our sample bundle, we have two file types, each with
its own icon. To define the icons for these files we would enter this into our Rez input file:

resource 'lCN#' (732)
{

$"FF FF FF FF"
$"FO 09 CD DD"

$"FF FF FF FF"

$"FF FF FF FF"
$"FF FF FF FF"

$"FF FF FF FF"

/* first icon: the lD number can be anything */
/* first, the icon */
/* each line is 4 bytes (32 bits) */
/* 32 lines total for icon */

/* 32nd line of icon */
/* now, the mask */
/* 32 lines total for mask */

/* 32nd line of mask*/

•

} ;

resource 'lCN#' (733) { /* second icon */

$"FF FF FF FF"

$"FF FF FF FF"

} ;

Technical Note #48 page 1 of 3 Bundles

Now that we've defined our icons we can set up the FREFs. An FREF is a file type
reference; you need one for each file type that has an icon. It ties a file type to a local
icon resource 10. This will be mapped by the BNDL onto an actual resource 10 number
of an ICN# resource. Our FREFs will look like this:

resource 'FREF' (816) { /* file type reference for application icon */
(•

} ;

'APPL', 605,
"n

/* the type is APPL(ication), the local ID is 605 */
/* this string should be empty (it is unused) */

resource 'FREF' (816) { /* file type reference for a document icon */

'TEXT', 612, /* the type is TEXT, the local ID is 612 */
/* this string should be empty (it is unused) */

} ;

The reason that you specify the local 10, rather than the actual resource 10 of the ICN# is
that the Finder will copy all of the bundle resources into the Desktop file and renumber
them to avoid conflicts. This means that the actual IDs will change, but the local IDs will
remain the same.

Every application (or other file with a bundle) has a unique four-character signature. The
Finder uses this to identify an application. The creator resource that contains a single
string, and should be defined like this:

type 'MINE' as 'STR '; /* MINE is the signature */
resource 'MINE' (0) { / * the creator resource ID must be 0 * /

"MyProgram 1.0 Copyright 1988"
} ;

Now for the BNDL resource. The BNDL resource associates local resource IDs with
actual resource IDs, and also tells the Finder what file types exist, and which ICN#s and
FREFs are part of the bundle. The resource looks like this:

resource 'BNDL' (128) { /* the bundle resource ID should be 0 */
'MINE', /* signature of this application */
0, /* the creator resource ID (this must be 0) */
{

'ICN#' , /* local resource ID mapping for icons */

605, 732, /* ICN# local ID 605 maps to 732 */
612, 733 /* ICN# local ID 612 maps to 733 */

} ,
'FREF' , /* local resource ID mapping for file type references */

523, 816, /* FREF local ID 523 maps to 816 */
555, 817 /* FREF local ID 555 maps to 817 */

} ,

•

•
Technical Note #48 page 2 of 3 Bundles

•
When you are in the Finder, your application, type APPL (FREF 816), will be displayed
with icon local ID 605 (from the FREF resource). This is ICN# 732. Files of type TEXT
(FREF 817) created by your application will be displayed with icon local ID 612 (from the
FREF resource). This is ICN# 733.

How the Finder Uses Bundles

If a file has the bundle bit set, but the bundle isn't in the Desktop file, the Finder looks for
a BNDL resource. If the BNDL resource matches the signature of theapplication, the
Finder then makes a copy of the bundle and puts it in the Desktop file. The file is then
displayed with its associated icon.

If a file has lost its icon (it's on a disk without the file containing bundle and the Desktop
file doesn't contain the bundle), then it will be displayed with the default document icon
until the Finder encounters a copy of the file that contains the right bundle. The Finder
then makes a copy of the application's bundle (renumbering resources if necessary)
and places it in the Desktop file of that disk.

Problems That May Arise

There are times when you have set up these resource types properly but the icon is
either the wrong one or it has defaulted to the standard application or data file icon.
There are a number of possible reasons for this.

• If you are using the Macintosh-based RMaker, the first thing to check is whether there
are any extraneous spaces in your resource compiler input file. The Macintosh-based
RMaker is very picky about extra spaces.

If your icon is defaulting to the standard icon, check to see that the bundle bit is set. If the
bundle bit isn't set, the Finder doesn't know to place the bundle in the Desktop file. If it
isn't in the Desktop file, the Finder displays the file with a default icon.

If you changed the icon and remade the resource file, but the file still has the same old
icon when displayed in the Finder. The old icon is still in the Desktop file. The Finder
doesn't know that you've changed it, so it uses what it has. To get it to use the new icon
you need to rebuild the Desktop file. To force the Finder to rebuild the Desktop file, you
can hold down the Option and Command keys on startup or on insertion of the disk in
question if it isn't the boot disk. The Finder will ask whether or not you want to rebuild the
desktop (meaning the Desktop file).

Have a bundle of fun!

•
Technical Note #48 page 3 013 Bundles

•

•

•

Macintosh Technical Notes

• #50: Calling SetResLoad

See also: The Resource Manager
Technical Note #1-DAs and System Resources

Written by:
Updated:

Jim Friedlander October 25, 1985
March 1, 1988

Calling SetResLoad (FALSE) can be useful if you need to get a handle to a resource,
without causing the resource to be loaded from disk if it isn't already in memory. This
technique is used in Technical Note #1. SetResLoad changes the value of the
low-memory global ResLoad (at location $A5E).

It is very important that your program not leave ResLoad set to FALSE when it exits.
Doing this will cause the system to reboot or crash when it does a GetResource call for
the next code segment to be loaded (usually the Finder). The system will crash because
GetResource will not actually load the code from disk when ResLoad is FALSE.

So, make sure that you call SetRe sLoad (TRUE) before exiting your program.

•

•
Technical Note #50 page 1 of 1 Calling SetResLoad

•

•

•

Macintosh Technical Notes

• #51: Debugging With PurgeMem and CompactMem

See also:

Written by:
Updated:

The Memory Manager

Jim Friedlander October 19, 1985
March 1, 1988

If you are having problems finding bugs like handles that aren't locked down when they
should be, or resources that aren't there when they're supposed to be, there is a handy
technique for forcing these problems to the surface. Every time through the main event
loop call:

PurgeMem(MaxSize);
size:= CompactMem(MaxSize);

{MaxSize = $800000}

•

•

PurgeMem will purge all purgeable blocks and CompactMem will rearrange the heap,
trying to find a contiguous free block of MaxSize bytes. Obviously, this will move things
around quite a bit, so, if there are any unlocked handles that you have de-referenced,
you will find out about them very quickly.

Don't be alarmed when you see the performance of your program deteriorate drastically
-it's because lots of resources are being loaded and purged every time through the
main event loop. You might want to have a debugging menu item that toggles between
glacial and normal execution speeds.

Please be sure to remove these two lines from any code that you ship!! In fact, neither
of these two calls should normally be made from your application. They tend to undo
work that has been done by the Memory and Resource Managers.

Technical Note #51 page 1 of 1 PurgeMem and CompactMem

•

•

•

•
Macintosh
Technical Notes

Developer Technical Support

#52: Calling Launch From a High-Level Language
Revised by: Rich Collyer
Written by: Jim Friedlander

April 1989
November 1985

•

•

This Technical Note formerly discussed calling _Launch from a high-level language which
allows inline assembly code.
Changes since March 1988: Merged contents into Technical Note #126.

This Note formerly discussed calling _ Launch from a high-level language. The information on
calling _Launch is now contained in Technical Note #126, Sub(Launching) From a High-Level
Language, which also covers sublaunching other applications.

#52: Calling _Launch From a High-Level Language 1 of 1

•

•

•

•
Macintosh Technical Notes

#53: MoreMasters Revisited

See also:

Written by:
Updated:

The Memory Manager

Jim Friedlander October 28, 1985
March 1, 1988

•

•

MoreMasters should be called from CODE segment 1. The number of
master pointers that a program needs can be determined empirically.
MoreMasters can be tricked into creating the exact number of master
pointers desired.

If you ask Macintosh programmers when and how many times MoreMasters should be
called, you will get a variety of answers, ranging from "four times in the initialization
segment" to "once, anywhere." As you might suspect, the answer is somewhat different
from either of these.

MoreMasters allocates a block of master pointers in the current heap zone. In the
application heap, a block of master pointers consists of 64 master pointers; in the system
heap, a block consists of 32 master pointers. Since master pointer blocks are
non-relocatable, we want to be sure to allocate them early. The system will allocate
one master pointer block as your program loads. It's the first object in the application
heap-its size is $108 bytes.

A lot of programmers call MoreMasters from an "initialization" segment, but as we shall
see, that's not such a good idea. The problem occurs when we unload our "initialization"
segment and it gets purged from memory.

Technical Note #53 page 1 of 3 MoreMasters Revisited

The following diagrams of the application heap illustrate what happens if we call
MoreMasters from CODE segment 2 (MPB stands for Master Pointer Block):

High
Memory

Before MoreMasters

Free
Heap
Space

After MoreMasters

Free
Heap
Space

After CODE 2 is purged

Free
Heap
Space

•

Low
Memory

~ non-relocatable m locked

Notice that we now have some heap fragmentation-not serious, but it can be avoided
by making all MoreMasters calls in CODE segment 1. Because InitWindows creates
the Window Manager Port (WMgrPort), it should also be called from CODE segment 1.
Both MoreMasters and InitWindows should be called before another CODE segment
is loaded, or the non-relocatable objects they allocate will be put above the CODE
segment and you'll get fragmentation when the CODE segment is purged. If you want to
call an initialization segment before calling MoreMasters and InitWindows, make
sure that you unload it before you call either routine. •

Now that we know when to call MoreMasters, how many times do we call it? The
answer depends on your application. If you don't call MoreMasters enough times, the
system will call it when it needs more master pointers. This can happen at very
inconvenient times, causing heap fragmentation. If you call MoreMasters too often, you
can be wasting valuable memory. This is preferable, however, to allocating too few
master pointer blocks!

The number of times you should call MoreMasters can be empirically determined.
Once your application is almost finished, remove all MoreMasters calls. Exercise your
application as completely as possible, opening windows, using handles, opening desk
accessories, etc. You can then go in with a debugger and see how many times the
system called MoreMasters. You do that by counting the non-relocatables of size $108.
Due to Memory Manager size correction, the master pointer blocks can also have a size
of $10C or $110 bytes. You should give yourself about 20% leeway - that is, if the
system called MoreMasters 10 times for you, you should call it 12 times. If you're more
cautious, you might want to call MoreMasters 15 times.

•
Technical Note #53 page 2 013 MoreMasters Revisited

Another technique that can save time at initialization is to calculate the number of master
pointers you will need. then set the MoreMast files of the heap zone header to that
number. and then call MoreMasters once:

• PROCEDURE MyMoreMasters(numMastPtrs INTEGER) ;

VAR

oldMoreMast
zone

INTEGER;
THz;

{saved value of MoreMast}
{heap zone}

BEGIN
zone := GetZone;
WITH zone~ DO BEGIN

oldMoreMast := MoreMast;
MoreMast := numMastPtrs;
MoreMasters;
MoreMast := oldMoreMast;

END;
END;

In MPWC:

void MyMoreMasters(numMastPtrs)
short numMastPtrs;

{get the heap zone}

{get the old value of MoreMast}
{put the value we want in the zone header}
{allocate the master pointers}
{restore the old value of MoreMast}

/* saved value of MoreMast*/
/* heap zone*/

•

•

/* MyMoreMasters */
short oldMoreMast;
THz oZone;

oZone GetZone();
oldMoreMast = oZone->moreMast;
oZone->moreMast = numMastPtrs;

MoreMasters();
oZone->moreMast = oldMoreMast;

/* MyMoreMasters */

/* get the heap zone*/
/* get the old value of MoreMast*/
/* put the value we want in the

zone header */
/*allocate the master pointers*/
/*restore the old value of MoreMast*/

Technical Note #53 page 3 013 MoreMasters Revisited

•

•

•

Macintosh Technical Notes

• #54: Limit to Size of Resources

Written by:
Updated:

Jim Friedlander October 23, 1985
March 1, 1988

This note formerly described a bug in writeResource on 64K ROM
machines. Information specific to 64K ROM machines has been deleted from
Macintosh Technical Notes for reasons of clarity.

•

•
Technical Note #54 page 1 of 1 Limit to Size of Resources

•

•

•

Macintosh Technical Notes

• #55: Drawing Icons

See also:

Written by:
Updated:

QuickDraw
Toolbox Utilities

Jim Friedlander October 21, 1985
March 1, 1988

•

Using resources of type ICON allows drawing of icons in srcOr mode. Using
resources of type ICN# allows for more variety when drawing icons.

There are two different kinds of resources that contain icons: ICON and ICN#. An ICON
is a 32 by 32 bit image of an icon and can be drawn using the following Toolbox Utilities
calls:

MylconHndl:= Getlcon(iconID);
Plotlcon(destRect,iconID);

While very convenient, this method only allows the drawing of icons in SrcOr mode (as
in the MiniFinder). The Finder uses resources of type ICN# to draw icons on the desktop.
Because the Finder uses ICN#s, it can draw icons in a variety of ways.

An ICN# resource is a list of 32 by 32 bit images that are grouped together. Common
convention has been to group two 32 by 32 bit images together in each ICN#. The first
image is the actual icon, the second image is the mask for the icon. To get a handle to
an ICN#, we would use something like this:

TYPE
iListHndl
iListPtr
iListStruct

VAR

myILHndl
iBitMap
mBitMap

"iListptr;
"iListStruct;
record

icon: packed array[O .. 31]
mask: packed array[O .. 31]

End; {iListStruct}

iListHndl;
BitMap;
BitMap;

of Longint;
of Longint;

{handle to an ICN#}
{BitMap for the icon}
{BitMap for the mask}

•
MyILHndl:= iListHndl(GetResource('ICN#',iconID»;
if MyILHndl = NIL then HandleError; { and exit or whatever is appropriate}

Technical Note #55 page 1 014 Drawing Icons

Once we have a handle to the icons, we need to set up two bitMaps that we will be using
later in CopyBi t s:

SetRect(icnRect,O,O,32,32);
with iBitMap do Begin

baseAddr:= @MyILHndlAA.icon;
rowbytes : = 4;
bounds:= icnRect;

End; {with}
with mBitMap do Begin

baseAddr:= @MyILHndlAA.rnask;
rowbytes:= 4;
bounds:= icnRect;

End; {with}

{ define the icon's 'bounds'}

{ 4 * 8 =32} •
Icons can represent desktop objects that are either selected or not. Folder and volume
icons can either be open or not. The object (or the volume it is on) can either be online
or offline. The Finder draws icons using all permutations of open, selected and online:

Non-Open Non-Open Open Open
Non-Sel ected Sel ected Non-Selected Selected

~ • 111111111111111 •On1i ne ...

-
Offl i ne I IJ llllllilllilill •:.........

:::::~ --
Drawing icons as non-open is basically the same for online and offline volumes. We
need to punch a hole in the desktop for the icon. This is analogous to punching a hole in
dough with an irregular shaped cookie-cutter. We can then sprinkle jimmies* all over the
cookie and they will only stick in the area that we punched out (the mask). We do this by
copyBitsing the mask onto the desktop (whatever pattern) to our destRect. For non-open,
non-selected icons:

fTIfll
~

we use the SrcBic mode so that we punch a white hole:

SetRect(destRect,left,top,left+32,top+32);
CopyBits(mBitMap,thePortA.portBits,icnRect,destRect,SrcBic,NIL);

Then we XOR in the icon:

CopyBits (iBitMap,thePortA.portBits,icnRect,destRect, SrcXor,NIL);

•

•
Technical Note #55 page2 of 4 Drawing Icons

•
That's all there is to drawing an icon as non-open, non-selected. To draw the icon as
non-open, selected:

•-we will OR in the mask, causing a mask-shaped BLACK hole to be punched in the
desktop:

CopyBits(mBitMap,thePortA.portBits,icnRect,destRect,SrcOr,NIL);

Then, as before, we XOR in the icon:

CopyBits(iBitMap,thePortA.portBits,icnRect,destRect,SrcXOr,NIL);

To draw icons as non-opened for offline volumes:

we need to do a little more work. We need to XOR a ItGray pattern into the boundsRect
of the icon. We will then punch the hole, draw the icon and then XOR out the Itgray
pattern that does not fall inside the mask. So, to draw the icon as offline, non-open,
non-selected we would:

CopyBits (mBitMap,thePortA.portBits, icnRect,destRect,SrcBic,NIL)i {punch)
PaintRect(destRect)i {XOR out bits outside of the mask, leaving the mask)

{filled with ltGray)
CopyBits(iBitMap,thePortA.portBits,icnRect,destRect,SrcOr,NIL)i {OR in)

{ the icon to the ltGray mask)
SetPenState(OldPen)i {restore the old pen state)

•
GetPenState(OldPen);
PenMode(patXor)i
PenPat(ltGraY)i
PaintRect(destRect)i

{save the pen state so we can restore it)

{paint a ltGray background for icon)

To draw the icon as offline, non-open, selected:

•-we would use a similar approach:

GetPenState(OldPen)i
PenMode(patXor)i
PenPat(dkGraY)i
PaintRect(destRect)i

{ save the pen state so we can restore it)

the icon is selected, so we need dkGray
{ paint a dkGray background for icon

•
CopyBits(mBitMap,thePortA.portBits,icnRect,destRect,SrcBic,NIL)i {punch)
PaintRect(destRect)i {XOR out bits outside of the mask, leaving the mask)

{filled with dkGray)
CopyBits(iBitMap,thePortA.portBits,icnRect,destRect,SrcBic,NIL)i {BIC the)

{icon to the dkGray mask)
SetPenState(OldPen)i {restore the old pen state)

Technical Note #55 page3 014 Drawing Icons

Drawing the opened icons requires one less step. We don"t have to CopyBits the icon
in, we just use the mask. Online and offline icons are drawn the same way. To draw
icons as open, selected:

•we do the following:

GetPenState(OldPen); (save the pen state so we can restore it)
PenMode(patxor);
PenPat(dkGray); the icon is selected, so we need dkGray)
PaintRect(destRect); (paint a dkGray background for icon)
CopyBits(mBitMap,thePortA.portBits,icnRect,destRect,SrcBic,NIL); (punch)
PaintRect(destRect); (XOR out bits outside of the mask, leaving the mask)

(filled with dkGray)
SetPenState(OldPen); (restore the old pen state)

To draw icons as open, non-selected:

1IIIIillllllili

we just need to change one line from above. Instead of XORing with a dkGray pattern,
we use a ItGray pattern:

•

These techniques will work on any background, window-white or desktop-gray and all
patterns in between. Have fun.

PenPat(ltGray);

* jimmies: little bits of chocolate

(the icon is non-selected, so we need ltGray)

•

•
Technical Note #55 page4 of4 Drawing Icons

Macintosh Technical Notes

• #56: BreakiCTS Device Driver Event Structure

See also: The Device Manager
Serial Drivers
Zilog Z8030/Z8530 SCC Serial Communications Controller

Technical Manual

Written by:
Updated:

Mark Baumwell December 2, 1986
March 1, 1988

•

•

This technical note documents the event record information that gets passed
when the serial driver posts an event for a breakiCTS status change.

The serial driver can be programmed to post a device driver event upon encountering a
break status change or CTS change (via the SerHShake call). The structure of device
driver events is driver-specific. This technical note documents the event record
information that gets passed when the serial driver posts a device driver event for a
breakiCTS status change.

When the event is posted, the message field of the event record will be a long word (four
bytes). The most significant byte will contain the value of SCC Read Register 0 (see
below for the relevant Read Register 0 values). The next byte will contain the changed
(since the last interrupt) bits of the SCC read register O. The lower two bytes (word) will
contain the DCtlRefNum.

The values for Read Register 0 are as follows:

• If a break occurred, bit 7 will be set.
• If CTS changed, bit 5 will reflect the state of the CTS pin (0 means the

handshake line is asserted and that it is OK to transmit).

We discourage posting these events because interrupts would be disabled for a long
time while the event is being posted. However, it is possible to detect a break or read the
value of the CTS line in another way. A break condition will always terminate a serial
driver input request (but not an output request). and the error breakRecd (-90) will be
returned. (This constant is defined in the SysEqu file.) You could therefore detect a
break by checking the returned error code.

The state of the CTS line can be checked by making a SerStatus call and checking the
value of the ct sHold flag in the SerStaRec record. See the Serial Drivers chapter of
Inside Macintosh for details.

Technical Note #56 page 1 of 1 BreaklCTS Device Driver Event Structure

•

•

•

Macintosh Technical Notes

• #57: Macintosh Plus Overview

See:

Written by:
Updated:

Inside Macintosh Volume IV

Scott Knaster January 8, 1986
March 1, 1988

This note was originally meant as interim Macintosh Plus documentation and
has been replaced by Inside Macintosh Volume IV, which is more complete
and more accurate.

•

•
Technical Note #57 page 1 of 1 Macintosh Plus Overview

•

•

•

Macintosh Technical Notes

• #58: International Utilities Bug

Written by:
Updated:

Jim Friedlander January 24, 1986
March 1, 1988

This note formerly described a bug in System 2.0, which is now
recommended only for use with 64K ROM machines. Information specific to
64K ROM machines has been deleted from Macintosh Technical Notes for
reasons of clarity.

•

•
Technical Note #58 page 1 of 1 International Utilities Package Bugs

•

•

•

Macintosh Technical Notes

• #59: Pictures and Clip Regions

See also:

Written by:
Updated:

QuickDraw

Ginger Jernigan January 16,1986
March 1, 1988

•

•

This note describes a problem that affects creation of QuickDraw pictures.

When a GrafPort is created, the fields in the GrafPort are given default values; one of
these is the clip region, which is set to the rectangle (-32767, -32767,32767,32767). If
you create a picture, then call DrawP ict ure with a destination rectangle that is not the
same size as the picFrame without ever changing the default clip region, nothing will
be drawn.

When the picture frame is compared with the destination rectangle and the picture is
scaled, the clip region is scaled too. In the process of scaling, the clip region you end up
overflows and becomes empty, and your picture doesn't get drawn. If you call
ClipRect (thePort A. portRect) before you record the picture, the picture will be
drawn correctly. The clipping on the destination port when playing back the picture is
irrelevant: once a picture is incorrectly recorded, it is too late.

Technical Note #59 Page 1 of 1 Pictures and Clip Regions

•

•

•

Macintosh Technical Notes

• #60: Drawing Characters into a Narrow GrafPort

See also:

Written by:
Updated:

QuickDraw

Ginger Jernigan January 20, 1986
March 1, 1988

When you draw a character into a GrafPort, your program will die with an
address error if the width of the GrafPort is smaller than the width of the
character. If you check before drawing the character to see if the GrafPort is
wide enough, you can avoid this unfortunate tragedy.

•

•
Technical Note #60 page 1 of 1 Drawing Characters into a Narrow Grafport

•

•

•

Macintosh Technical Notes

• #61: GetltemStyle Bug

Written by:
Updated:

Jim Friedlander January 21, 1986
March 1, 1988

This note formerly described a bug (in Get ItemStyle) which occurs only on
64K ROM machines. Information specific to 64K ROM machines has been
deleted from Macintosh Technical Notes for reasons of clarity.

•

•
Technical Note #61 page 1 of 1 GetltemStyle Bug

•

•

•

Macintosh Technical Notes

• #62: Don't Use Resource Header Application Bytes

See also:

Written by:
Updated:

The Resource Manager

Bryan Stearns January 23,1986
March 1, 1988

The section of the Resource Manager chapter of Inside Macintosh which
describes the internal format of a resource file shows an area of the resource
header labeled "available for application data." You should not use this
area-it is used by the Resource Manager.

•

•
Technical Note #62 page 1 of 1 Don't Use Resource Header Bytes

•

•

•

Macintosh Technical Notes

• #63: WriteResource Bug Patch

Written by:

Modified by :
Updated:

Rick Blair
Jim Friedlander
Bryan Stearns
Jim Friedlander

January 15, 1986

March 3, 1986
March 1, 1988

This note formerly contained a patch to fix a bug in WriteResource on 64K
ROM machines. Information specific to 64K ROM machines has been deleted
from Macintosh Technical Notes for reasons of clarity .

•

•
Technical Note #63 page 1 of 1 WriteResource Bug Patch

•

•

•

Macintosh Technical Notes

• #64: IAZNotify

Written by:
Modified by:
Updated:

Jim Friedlander
Jim Friedlander

January 15, 1986
August 18, 1986
March 1, 1988

Previous versions of this technical note recommended use of a low memory
hook called IAZNotify. We no longer recommend use of IAZNotify, since
the IAZNot i fy hook is never called under MultiFinder.

•

•
Technical Note #64 page 1 of 1 IAZNotify

•

•

•

•
Macintosh Technical Notes

U
#65: Macintosh Plus Pinouts

See also: Macintosh Hardware Reference Manual

Written by:
Modified by:
Updated:

Mark Baumwell
Mark Baumwell

January 27, 1986
March 20, 1986
March 1, 1988

This note gives pinout descriptions for some of the Macintosh Plus ports and
Macintosh Plus cables that are different than the Macintosh 128K and 512K.

Below are pinout descriptions for some Macintosh Plus ports and cables that are different
than the Macintosh 128K and 512K. Note that any unconnected pins are omitted.

Macintosh Plus Port Pinouts

• Macintosh Plus Serial Connectors (Mini DIN-8)

(Female
Connector)

•

ao
1
2
3
4
5
6
7
8

N.am.e
HSKo
HSKi/External Clock
TxD-
Ground
RxD-
TxD+
Not connected
RxD+

pescription/Notes
Output Handshake (from Zilog 8530 DTR pin)
Input Handshake (CTS) or TRxC (depends on 8530 mode)
Transrnt Data line

Receive Data line
Transrnr Data line

Receive Data line; ground this line to emulate RS232

Technical N01e#65 page 1 of 3 Macintosh PlusPinouts

Macintosh Plus SCSI Connector (08-25)

8 7 6 5 4 3 2 1
(Female • • • • • • • • •Connector) 25 24 23 22 21 20 19 18 17 16 15 14• • • • • • • • • • • •

Eln ~ Description/Notes
1 REQ-
2 MSG-
3 I/O-
4 RST-
5 ACK-
6 BSY-
7 Ground
8 DBO-
9 Ground
10 DB3-
11 DB5-
12 DB6-
13 DB7-
14 Ground
15 C/D-
16 Ground
17 ATN-
18 Ground
19 SEL-
20 DBP-
21 DB1- •22 DB2-
23 DB4-
24 Ground
25 TPWR Not connected

•
Technical Note #65 page 2013 Macintosh Plus Pinouts

•
Macintosh Plus Cable Pinouts

Apple System Peripheral-8 Cable (connects Macintosh Plus to ImageWriter II
and Apple Personal Modem)
(Product part number: M0187)
(Cable assembly part number: 590-0340-A (stamped on cable itself).

(Male
Connector)

Jumpered to 08-9 pin 1 (in 08-9 connector)

Jumpered to 08-9 pin 3 (in 08-9 connector)

(OIN-8)
2
1
5
4
3
8
7
6

Macintosh Plus Adapter Cable (connects Macintosh Plus 01N-8 to existing
Macintosh 08-9 cables)
(Apple part number: M0189)
(Cable assembly part number: 590-0341-A (stamped on cable itself).

~

(PIN-8)
1
2
3
4
5
6
7
8

(pIN-8) ~ !Qa:9l
1 +12V 6
2 HSK 7
3 TxO- 5
4 Ground 3
5 RxP- 9
6 TxO+ 4
7 no wire
8 RxO+ 8

Ground 1

•

•
Technical Note #65 page3 of3 Macintosh PUsPinouts

•

•

•

•
Macintosh
Technical Notes

Developer Technical Support

#66: Determining Which File System Is Active
Revised by:
Written by:

Robert Lenoil & Brian Bechtel
Jim Friedlander

August 1990
December 1985

•

This Technical Note discusses how to determine which file system a particular volume is running.
Changes since June 1990: Removed text about IDs $0001-$0016 being AppleShare volumes;I
other file systems use this range too.

Under certain circumstances it is necessary to determine which file system is currently running on a
particular volume. For example, on a 64K ROM machine, your application (i.e., especially disk
recovery utilities or disk editors, etc.) may need to check for MFS versus HFS. Note that this is
usually not necessary, because all ROMs, except the original 64K ROMs, include HFS. If your
application only runs on 128K ROMs or newer, you do not need to check for HFS versus MFS.
You may need to check if a particular volume is in High Sierra, ISO 9660, or audio CD format.

Before performing these file system checks, be sure to call SysEnvirons, to make sure the
machine on which you are running has ROMs which know abOut the calls you need.

To check for HFS on 64K ROM machines, check the low-memory global FSFCBLen (at location
$3F6). This global is one word in length (two bytes) and is equal to -1 if MFS is active and a
positive number (currently SSE) ifHFS is active. From Pascal, the following would perform the
check:

CaNST
FSFCBLen = S3F6;

VAR
HFS: A INTEGER;

{address of the low-memory global}

•

HFS:= POINTER{FSFCBLen);
IF HFSA > 0 THEN

{we're running HFS}
ELSE

{we're running MFS}
END;

If an application determines that it is running under HFS, it should not assume that all mounted
volumes are HFS. To check individual volumes for HFS, call PBHGetVlnfo and check the
directory signature (the ioVSigWord field of an HParamBlockRec). A directory signature of
$D2D7 means the volume is an MFS volume, while a directory signature of $4244 means the
volume is an HFS volume .

#66: Determining Which File System Is Active 10f2

Macintosh Technical Notes

To find out if a volume uses a file system other than HFS or MFS, call_PBHGetVlnfo and
check the file system ID (the ioVFSID field of an HParamBlockRec). A file system ID of
$0000 means the volume is either HFS or MFS. A file system ID of $4242 means the volume is a •
High Sierra volume, while a file system ID of $4147 is an ISO 9660 volume, and a file system ID
of $4A48 is an audio CD volume. AppleShare and other file systems use a dynamic technique of
obtaining the first unused file system ID; therefore, low-numbered IDs cannot be associated with
any particular file system.

When dealing with High Sierra and ISO 9660 formats, do not assume that the volumes are CD­
ROM discs. Support for these file systems is done with the External File System hook in the File
Manager, so any block-based media could potentially be in these formats. It is possible to have a
High Sierra formatted floppy disk, although it would be useless except for testing purposes.

Further Reference:
• Inside Macintosh, Volume IV, File Manager
• Technical Note #209, High Sierra & ISO 9660 CD-ROM Formats
• Technical Note #129, _SysEnvirons: System 6.0 and Beyond

•

•
20f2 #66: Determining Which File System Is Active

